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1

1 Introduction

1.1 Hamiltonian Systems

The Hamiltonian dynamical systems have been of much interest in many research

areas. They are the systems that can be expressed as Hamiltonian equations. The

equations are formulated by the Hamiltonian mechanics, an alternative and equivalent

formalism of Newtonian and Lagrangian which have become one of the most useful

tools in the mathematical theory of physical and engineering sciences. Hamiltonian

mechanics were first introduced by William Rowan Hamilton in 1833. Since then,

many famous scientists, such as Poincaré, Jacobi, Birkhoff, Weyl, Kolmogorov, and

Arnold, have studied the subject [1]. A system is governed by the total energy or the

”Hamiltonian”: H. The Hamiltonian generally, for a closed system, comprises the

kinetic and the potential energy.

Hamiltonian systems typically arise as models of conservative physical systems and

have many applications in classical mechanics, molecular dynamics, hydrodynamics,

electrodynamics, plasma physics, relativity, astronomy, and other scientific fields [41,

42]. Almost all real physical processes with negligible dissipation can be described in

some way or another by Hamiltonian formalism [1].

The formulation of a Hamiltonian system with a given Hamitonian function

H(p1, . . . , pn; q1, . . . , qn) is given by

dpi

dt
= −∂H

∂qi

,
dqi

dt
=

∂H

∂pi

; i = 1, 2, . . . , n (1)
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This system can be represented in a matrix form as

∂z

∂t
= J−1∂H

∂z
, z = (p,q)T.

where J =

 0 In

−In 0

 .

In particular, a canonical linear Hamiltonian system is defined by a quadratic

Hamiltonian

H =
1

2
zT Lz

where L is a 2d × 2d, d is degree of freedoms, symmetric matrix and z = [p,q]T .

1.2 Conservation properties of the Hamiltonian Systems

In addition to its elegance and symmetry, a Hamiltonian system has some remark-

able qualitative properties; Geometrical structure, Conservation laws, Symmetries,

and Asymtotic behaviors would be some examples. Most important among those

properties are its symplectic structure, discussed in section 1.3, and the optimality

for energy preservation. Any good numerical scheme should be able to replicate as

many of these physical properties as possible. The symplectic structure is, in na-

ture, volume-preserving. Traditional ODE solvers such as Runge-Kutta or multi-step

methods usually do not preserve the symplectic structure and energy. As a conse-

quence, numerical trajectories tend to gradually drift away from the true solution

trajectories in a phenomenon called phase shift.

One of the reasons why it is important to preserve qualitative structure is that

those properties can be found in a system that occurs naturally ,e.g. stellar dynam-
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ics or molecular dynamics, mechanical system evolving under rotational constraints.

Those systems can be described by Hamiltonian systems with many conservative laws

[6].

Theoretical study shows that the solution of a Hamiltonian system can be de-

scribed by an evolution semigroup which is a symplectic mapping for any fixed t.

Furthermore, the Hamiltonian is conserved along trajectories,

H(pN(tN), qN(tN)) = H(pN(t0), qN(t0)) = H(p0, q0),

i.e., a spectral method preserves the energy up to numerical integration error. In many

practical problems, due to the analytic nature of H(p, q) and the spectral accuracy,

we are able to control the numerical quadrature error to the machine epsilon, i.e.,

10−15 with a reasonable N , say, N ≤ 20. In this case, the spectral methods that we

are introducing preserve the energy in practice.

For another important feature or property of the Hamiltonian system or the sym-

plectic structure (discussed further in section 1.3.1), namely, the Jacobi matrix of the

transformation (
∂zzzN

∂zzz0

)
, zzz =

(
ppp

qqq

)
satisfies (

∂zzzN

∂zzz0

)
J

(
∂zzzN

∂zzz0

)T

= J, J =

 0 IN

−IN 0

 .

Note that with the above notation, the Hamiltonian system can be written as

zzzt = J−1Hz.
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Based on the high accuracy of the spectral Galerkin and the spectral collocation

methods, it is reasonable to expect that

(
∂zzzN

∂zzz0

)T

J

(
∂zzzN

∂zzz0

)
= J + O(e−σN).

This has a significant meaning in practice. When the error reaches the machine

epsilon which is about 10−15, the scheme is, in practice, volume-preserving (i.e., pre-

serves the symplectic structure)! The reader is referred to [50] for more conservation

properties of numerical methods.

1.3 Numerical Methods for the Hamiltonian Systems

The numerical study for the ordinary differential equations has attracted a lot of

interests from many research areas. It has continued to be a lively area of numerical

analysis for more than a century [16]. There are useful and well known theoretical

studies and results shown in e.g., Hairer [35], Butcher [7, 8]. However, the theory of

numerical methods for ordinary differential equations has reached a certain level of

maturity in the last few decades [35]. Many ordinary numerical approximations of the

systems , e.g. most of the Runge- Kutta methods, finite element method, finite differ-

ence method, are not structurally stable for the long-term behavior of the numerical

solution. The motivation for developing structure-preserving algorithms for special

classes of problems came independently from different areas of research such as as-

tronomy, molecular dynamics, mechanics, theoretical physics, and numerical analysis

as well as from other areas of both applied and pure mathematics. It turns out that
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the preservation of geometric properties of the flow not only produces an improved

qualitative behavior, but also allows for a more accurate long-time integration when

compared with the general-purpose methods.

1.3.1 Symplectic Algorithms

The numerical solution of a Hamiltonian system is one of the significant topics in

geometric numerical integration [16]. The implementation of the numerical approx-

imation as the exact solution of an ordinary differential equation should be insight

with the long-time behavior.

The idea of developing numerical methods that maintain the symplectic structure

was first studied in a general setting by Feng in the 1980s [19]. This was followed

by a successful systematic study of designing so-called symplectic algorithms [20,

21, 22, 23, 24, 25, 26, 35, 47]. But, none of these symplectic algorithms is energy-

preserving in general. Indeed, it was proved that there exists no energy-preserving

symplectic algorithm for the general nonlinear Hamiltonian systems [28, 18]. On the

other hand, Galerkin-type methods such as finite element methods are well-known

to preserve energy. Now we face a dilemma having to choose between preserving

energy and preserving symplectic structure. Some argue that for highly oscillatory

problems, preserving energy may be more important than the symplectic structure

[13, 14, 46, 10, 27, 6].

Let ψ be a C1 transformation in a domain Ω given by [46]

(ppp∗, qqq∗) = ψ(ppp,qqq).
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This transformation ψ is area preserving if and only if the Jacobian determinant is 1

(|ψ′| = 1);

|ψ′(ppp,qqq)| =

∣∣∣∣∣
∂ppp∗

∂ppp
∂ppp∗

∂qqq

∂qqq∗

∂ppp
∂qqq∗

∂qqq

∣∣∣∣∣ =
∂ppp∗

∂ppp

∂qqq∗

∂qqq
− ∂ppp∗

∂qqq

∂qqq∗

∂ppp
= 1

=

 ∂ppp∗

∂ppp
∂qqq∗

∂ppp

∂ppp∗

∂qqq
∂qqq∗

∂qqq


 0 IN

−IN 0


 ∂ppp∗

∂ppp
∂ppp∗

∂qqq

∂qqq∗

∂ppp
∂qqq∗

∂qqq



= ψ
′T Jψ′ where J =

 0 IN

−IN 0


Therefore, in order to check symplecticness, the transformation must satisfies

(
∂zzzN

∂zzz0

)T

J

(
∂zzzN

∂zzz0

)
= J, J =

 0 IN

−IN 0

 .

Some examples of symplectic algorithms are shown in the Appendix(B).

1.3.2 Spectral Methods

Spectral methods were originally introduced in 1944 by Blinova and were first

implemented in 1954 by Silberman. It was virtually abandoned in the mid 1960s

but resurrected in 1969−70 by Orszag and by Eliason, Machenhauer and Rasmussen.

Then it was developed for specialized applications in the 1970s, endowed with the

first mathematical foundations by the seminal work of Gottlieb and Orszag in 1977.

The extension of the methods and their analysis to a broader class of problems was
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proposed in the 1980s, and entered the mainstream of scientific computation in the

1990s [12].

Spectral methods are a class of spatial discretizations for differential equations.

The key components for their formulation are the trial functions (also called the ex-

pansion or approximating functions) and the test functions (also known as weight

functions). The trial functions, which are linear combinations of suitable trial basis

functions, are used to provide the approximate representation of the solution. The

test functions are used to ensure that the differential equation and perhaps some

boundary conditions are satisfied as closely as possible by the truncated series expan-

sion. The spectral method and finite element method are closely related and built

on the same concepts. The main difference is that the spectral method approximates

the solution as a linear combination of continuous functions over the domain (global

smooth functions), while the FEM approximates the solution as a linear combination

of piecewise functions on a small subdomain(local smooth functions).

There are three classifications of spectral methods according to the test functions

and the residual. Consider the problem [37]

∂u(x, t)

∂t
= Lu(x, t) , x ∈ [a, b], t ≥ 0

BLu = 0 , BRu = 0 t ≥ 0

u(x, 0) = f(x)

where BL,R are the boundary operators at x = a , x = b.
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The residual of the numerical solution uN(x, t) is defined by

RN(x, t) =
∂uN(x, t)

∂t
− LuN(x, t).

1. Spectral Galerkin Method

In this method, we seek solutions, uN(x, t) ∈ BN of the form

uN(x, t) =
N∑

j=0

aj(t)φj(x)

where φj(x) is a polynomial taken from space

BN = span{φj(x) ∈ span{xk}N
k=0 | BLu = 0 , BRu = 0}N

j=0.

This method requires the residual RN to be orthogonal to the test functions from

the space BN .

2. Spectral Tau Method

In this method, we seek solutions uN(x, t) ∈ BN . However, we do not project the

residual onto the space BN but rather onto the polynomial space PN−k = span{xn}N−k
n=0

where k is the number of boundary conditions i.e. the test functions are not required

to satisfy the boundary conditions. However, the boundary conditions are enforced

by an additional set of k equations.

3. Spectral Collocation Method

This method does not require the projection of the residual onto some polynomial

space to be zero. The method is obtained by seeking uN(x, t) ∈ BN and requiring the

residual to vanish at a certain set of grid points, normally some set of Gaussian-type

points

∂uN(x, t)

∂t
|xj

− LuN(x, t)|xj
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where {xj}’s are Gaussian-type points.

For more references regarding spectral and spectral collocation methods, the

reader is referred to [4, 5, 11, 12, 29, 30, 38, 45, 48, 51] and references therein.

There have been some recent attempts in using the spectral method [49] and

the spectral collocation method, derived from a recursive relation of the Legendre

polynomials [31], to solve the ODEs. We introduce an algorithm based on spectral

collocation and Tau method to preserve both energy and volume (symplectic struc-

ture) up to numerically negligible error terms. If the error term is so small that it

reaches the machine epsilon, the computer round-off error, then the algorithm is prac-

tically energy and volume preserving. We shall use a series of numerical benchmark

problems to demonstrate that our methods are effective and much more accurate than

the symplectic methods with a similar computational cost.

This work carries on a systematic comparison between the proposed spectral col-

location method and the symplectic methods. It gives a comparison of numerical

results of both linear and nonlinear Hamiltonian systems by using the spectral meth-

ods and the symplectic methods. The collocation methods demonstrate an evidence

of a better approximation on linear and nonlinear Hamiltonian systems.
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2 Methods

In this section, we will discuss the methods to obtain the optimum results for

a given Hamiltonian system. As mentioned in the first chapter, a good numerical

method should preserve the structure of the solution in a long-term period. There

are several spectral methods that will be considered in this chapter. We also compare

the result with the symplectic methods.

For simplicity, we use the case n = 1 in (1) to illustrate the idea. We can apply

this simple model to a larger system, with n > 1, in a similar way. Consider the

nonlinear Hamiltonian system

p′ = −∂H

∂q
= F (p, q), q′ =

∂H

∂p
= G(p, q), p(0) = p0, q(0) = q0,

where F and G are nonlinear functions. We solve the system on [0, T ] first, then

use the obtained values (p(T ), q(T )) as an initial condition to repeat the process on

[T, 2T ] , and so on. Here T could be large; but a convenient choice is T = 2. However,

the best T is within [0.75, 2].

2.1 Spectral Collocation Method with the Differentiation Ma-

trices

We use either the Chebyshev-Gauss-Lobatto or the Legendre-Gauss-Lobatto col-

location methods to solve it. Let t0 < t1 < · · · tN be collocation points where t0 = 0

and tN = T .
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2.1.1 Spectral Collocation Method with the Chebyshev Differentiation

Matrix

We are seeking numerical approximations (interpolations of p and q) pN , qN ∈

PN [0, T ], pN(0) = p0 and qN(0) = q0 of the form

pN(t) =
N∑

j=0

ajTj(t) =
N∑

j=0

pN(tj)lj(t)

qN(t) =
N∑

j=0

bjTj(t) =
N∑

j=0

qN(tj)lj(t)

such that

dpN

dt
(tk) = F (pN(tk), q

N(tk)) , 0 ≤ k ≤ N,

dqN

dt
(tk) = G(pN(tk), q

N(tk)) , 0 ≤ k ≤ N,

where t0, t1, ..., tN are the transformed Chebyshev-Gauss-Lobatto quadrature points,

i.e. tj =
T (xj + 1)

2
where xj = −cos(

π

N
j) , j = 0, 1, ..., N and T ′

js are the Chebyshev

polynomials on [0, T ].

Note that lj(xi) = δij where , for Chebyshev-Gauss-Lobatto,

lj(x) =
(−1)N+j(1 − x2)T ′

N(x)

cjN2(x − xj)

c0 = cN = 2 and cj = 1 otherwise [37, 12].

The system can then be written as

N∑
j=0

djip
N(tj) = F (pN(ti), q

N(ti))

N∑
j=0

djiq
N(tj) = G(pN(ti), q

N(ti))
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for each i = 0, 1, ..., N .

In the literature of the spectral method, the explicit form of the differentiation

matrix D = (dij)
N
i,j=0 is known [4, 5, 37, 11, 12, 30, 48] where

dij = `′j(ti) =



−2N2+1
6

, i = j = 0

ci

cj

(−1)i+j

xi−xj
, i 6= j

− xi

2(1−x2
i )

, i = j ∈ 1, ..., N − 1

2N2+1
6

, i = j = N

.

With the scaling of
2

T
, this differentiation matrix can be transformed to the in-

terval [0, T ].

Note that the rank of the (N + 1) × (N + 1) matrix D is N . Therefore, we may

solve the system

d11p1 + d12p2 + · · · d1NpN = f(p1, q1) − d10p0

...

dN1p1 + dN2p2 + · · · dNNpN = F (pN , qN) − dN0p0

d11q1 + d12q2 + · · · d1NqN = g(p1, q1) − d10q0

...

dN1q1 + dN2q2 + · · · dNNqN = G(pN , qN) − dN0q0

to obtain ppp = (p1, p2, . . . , pN)T and qqq = (q1, q2, . . . , qN)T , where here we denote

pN(tk) = pk, q
N(tk) = qk, and use the rest two equations

d01p1 + d02p2 + · · · d0NpN = F (p0, q0) − d00p0,
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d01q1 + d02q2 + · · · d0NqN = G(p0, q0) − d00q0

to estimate the error.

If we denote,

FFF (ppp,qqq) =



F (p1, q1) − d10p0

F (p2, q2) − d20p0

...

F (pN , qN) − dN0p0


, and GGG(ppp,qqq) =



G(p1, q1) − d10q0

G(p2, q2) − d20q0

...

G(pN , qN) − dN0q0


then we design a numerical iteration in the matrix formD̃ 0

0 D̃


pppnew

qqqnew

 =

FFF (pppold, qqqold)

GGG(pppold, qqqold)

 ,

where D̃ is a N × N matrix by eliminating the first row and the first column of D.

This format is valid for any N . In the process, we may use Gauss-Seidal-type iteration

to update the information as soon as possible.

The initial guesses to start the spectral collocation are (N ×1) vectors (p0, ..., p0)
T

and (q0, ..., q0)
T where p0, q0 are the initial values.

2.1.2 Spectral Collocation Method with the Legendre Differentiation Ma-

trix

We are seeking numerical approximations (pN(tj), q
N(tj)), denoted as (pN

j , qN
j ),

where interpolation of p and q are of the form

pN(t) =
N∑

j=0

ajLj(t) =
N∑

j=0

pN(xj)lj(t)
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qN(t) =
N∑

j=0

bjLj(t) =
N∑

j=0

qN(xj)lj(t)

where t0, t1, ..., tN are the transformed Legendre-Gauss-Lobatto quadrature points,

i.e. tj =
T (xj + 1)

2
where xj , j = 0, 1, ..., N are zeros of (1 − x2)

d

dx
LN(x) and L′

js

are the Legendre polynomials on [0, T ] [37, 12].

Note that lj(xi) = δij where , for Legendre-Gauss-Lobatto,

lj(x) =
−(1 − x2)L′

N(x)

N(N + 1)(x − xj)LN(xj)
.

The system can then be written as

N∑
j=0

djipN(tj) = F (pN(ti), qN(ti))

N∑
j=0

djiqN(tj) = G(pN(ti), qN(ti))

for each i = 0, 1, ..., N .

The explicit form of the Legendre differentiation matrix D = (dij)
N
i,j=0 can be

found in a similar way with dij = `′j(ti) where

dij = `′j(ti) =



−N(N+1)

4
, i = j = 0

LN (xi)
LN (xj)

1
xi−xj

, i 6= j

0, i = j ∈ 1, ..., N − 1

N(N+1)
4

, i = j = N

.

With the scaling of
2

T
, this differentiation matrix can be transformed to the interval

[0, T ].
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2.2 Spectral Tau Methods

2.2.1 Spectral Tau Method with Legendre-Phi

To establish the method in the following section, we introduce a set of trial

functions

ϕ0(t) =
T − t

T
, ϕ1(t) =

t

T
, ϕj(t) =

∫ t

0

Lj−1(s)ds , j = 2, ..., N.

The recursive relation of Legendre polynomials provides

ϕj(t) =
T

2j + 1
(Lj(t) − Lj−2(t)).

These trial functions have the value at the boundary that ϕ0(0) = 1, ϕ0(T ) =

0, ϕ1(0) = 0, ϕ1(T ) = 1 and ϕi(0) = 0 = ϕi(T ) , for i = 2, ..., N .

The inner product of Legendre polynomial on [0, T ] is given by [31]

(Li, Lj)T =

∫ T

0

Li(s)Lj(s)ds =


T

2j + 1
, for i = j

0 otherwise

With this method, we find the solution

p − p0, q − q0 ∈ H1
(0[0, T ] = {v ∈ H1[0, r] : v(0) = 0} such that

(
dp

dt
, v) = (−Hq, v) , v ∈ H1[0, T ]

(
dq

dt
, v) = ( Hp, v)

For the weak form, we seek solutions pN , qN ∈ PN [0, T ], pN(0) = p0 and qN(0) = q0

of the form

pN(t) = p0ϕ0(t) + pNϕ1(t) +
N∑

j=2

pj−1ϕj(t) , qN(t) = q0ϕ0(t) + qNϕ1(t) +
N∑

j=2

qj−1ϕj(t)
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such that

(
dpN

dt
, Li) = (−Hq(p

N , qN), Li) , i = 0, ..., N − 1

(
dqN

dt
, Li) = ( Hp(p

N , qN), Li) (2.2.1)

With the derivative of the expansion

dpN(t)

dt
=

(pN − p0)

T
+

N−1∑
j=1

pjLj(t) ,
dqN(t)

dt
=

(qN − q0)

T
+

N−1∑
j=1

qjLj(t),

the system (2.2.1) can be written as a matrix equation

Az(t) = F(z(t))

where

A =

 D 0

0 D

 , D =



1 0 . . . 0

0 T
3

. . . 0

...
...

. . .
...

0 0 . . . T
2N−1



z =

 p

q

 =



pN − p0

p1

...

pN−1

qN − q0

q1

...

qN−1



, F(z) =



(−Hq(p
N , qN), L0)

(−Hq(p
N , qN), L1)

...

(−Hq(p
N , qN), LN−1)

(Hp(p
N , qN), L0)

(Hp(p
N , qN), L1)

...

(Hp(p
N , qN), LN−1)



.
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We solve the system by using an iterative method.

Aznew = F(zold)

The benefit of this expansion is that the numerical values at the right endpoint of

each interval, for example pN(T ), qN(T ), are just the coefficients of ϕ1(t).

pN(T ) = pN , qN(T ) = qN

The initial guesses to start the iterative method are (N × 1) vectors (p0, ..., p0)
T

and (q0, ..., q0)
T where p0 and q0 are the initial values. Then evaluate pN and qN at

t = T which is the same thing as using the coefficients pN and qN as the new initial

conditions to the next interval.

2.2.2 Spectral Tau Method with Chebyshev-Phi

In this method, we introduce a set of trial functions which are similar to those in

section 2.2.1

ϕ0(t) =
T − t

T
, ϕ1(t) =

t

T
, ϕj(t) =

∫ t

0

Tj−1(s)ds , j = 2, ..., N

For the Chebyshev polynomials, the recursive relation for the integral on [−1, 1]

is given by

∫
T̂n(x)dx =


1

2

[ T̂n+1(x)

n + 1
−

T̂|n−1|(x)

n − 1

]
, n 6= 1

1

4
T̂2(x) , n = 1



www.manaraa.com

18

Therefore, for t ∈ [0, T ],

ϕ2(t) =
T

2

(1

4
T2(t) −

1

4
T2(0)

)
=

T

8
T2(t) −

T

8

ϕj(t) =
T

2

{1

2

[Tj(t)

j
− Tj−2(t)

j − 2

]
+

(−1)j

2

[ 1

j − 2
− 1

j

]}
, j = 3, 4, ...

At this point, we shall make an observation that

ϕ0(0) = 1 ; ϕ0(T ) = 0 ; ϕ1(0) = 0 ; ϕ1(T ) = 1 ;

and , for j ≥ 2,

ϕj(0) = 0 ; ϕj(T ) =
T

4

[1

j
(1 − (−1)j) − 1

j − 2
(1 − (−1)j)

]

=


T

2

[1

j
− 1

j − 2

]
, j is odd

0 , j is even

The inner product of Chebyshev polynomials on [0, T ] is given by

(Ti, Tj)T =

∫ T

0

Ti(s)Tj(s)ds =



1

4
Tπ , i = j = 1, 2, ...

T

2
π , i = j = 0

0 otherwise

In this method, we find the solution

p − p0, q − q0 ∈ H1
(0[0, T ] = {v ∈ H1[0, r] : v(0) = 0} such that

(
dp

dt
, v) = (−Hq, v) , v ∈ H1[0, T ]

(
dq

dt
, v) = ( Hp, v)
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For the weak form, we seek solutions pN , qN ∈ PN [0, T ], pN(0) = p0 and qN(0) = q0

of the form

pN(t) = p0ϕ0(t) + pNϕ1(t) +
N∑

j=2

pj−1ϕj(t) , qN(t) = q0ϕ0(t) + qNϕ1(t) +
N∑

j=2

qj−1ϕj(t)

such that

(
dpN

dt
, Ti) = (−Hq(p

N , qN), Ti) , i = 0, ..., N − 1

(
dqN

dt
, Ti) = ( Hp(p

N , qN), Ti) (2.2.2)

With the derivative of the expansion

dpN(t)

dt
=

(pN − p0)

T
+

N−1∑
j=1

pjTj(t) ,
dqN(t)

dt
=

(qN − q0)

T
+

N−1∑
j=1

qjTj(t),

the system (2.2.2) can be written as a matrix equation

Az(t) = F(z(t))

where

A =
T

2

 D 0

0 D

 , D =



π 0 . . . 0

0 π
2

. . . 0

...
...

. . .
...

0 0 . . . π
2


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z =

 p

q

 =



pN−p0

T

p1

...

pN−1

qN−q0

T

q1

...

qN−1



, F(z) =



(−Hq(p
N , qN), T0)

(−Hq(p
N , qN), T1)

...

(−Hq(p
N , qN), TN−1)

(Hp(p
N , qN), T0)

(Hp(p
N , qN), T1)

...

(Hp(p
N , qN), TN−1)


or

z(t) =
4

πT
F(z(t))

where

z =

 p

q

 =



2
T
(pN − p0)

p1

...

pN−1

2
T
(qN − q0)

q1

...

qN−1



, F(z) =



(−Hq(p
N , qN), T0)

(−Hq(p
N , qN), T1)

...

(−Hq(p
N , qN), TN−1)

(Hp(p
N , qN), T0)

(Hp(p
N , qN), T1)

...

(Hp(p
N , qN), TN−1)



.

We solve the system by using an iterative method

znew =
4

πT
F(zold).
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We keep the same concept on the initial guesses. The initial guesses to start the

iterative method are (N × 1) vectors (p0, ..., p0)
T and (q0, ..., q0)

T where p0 and q0 are

the initial values. However, the values at the terminal point of each interval need to

be evaluated differently from the previous two methods with Legendre-Phi. In this

method, we need to compute the end value by using the original expansions.

pN(T ) = pN +
N∑

odd j;j=2

pj−1
T

2

[1

j
− 1

j − 2

]
qN(T ) = qN +

N∑
odd j;j=2

qj−1
T

2

[1

j
− 1

j − 2

]

2.3 Spectral Collocation Methods

2.3.1 Spectral Collocation Method with Legendre-Phi

In this method, we use the same set of trial functions that we have introduced in

the previous section

ϕ0(t) =
T − t

T
, ϕ1(t) =

t

T
, ϕj(t) =

∫ t

0

Lj−1(s)ds , j = 2, ..., N

The recursive relation of Legendre polynomials provides

ϕj(t) =
T

2j + 1
(Lj(t) − Lj−2(t)).

We seek for the solutions pN , qN ∈ PN [0, T ], pN(0) = p0 and qN(0) = q0

pN(t) = p0ϕ0(t) + pNϕ1(t) +
N∑

j=2

pj−1ϕj(t)

qN(t) = q0ϕ0(t) + qNϕ1(t) +
N∑

j=2

qj−1ϕj(t)
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such that

dpN

dt
(tk) = F (pN(tk), q

N(tk)) , 1 ≤ k ≤ N,

dqN

dt
(tk) = G(pN(tk), q

N(tk)) , 1 ≤ k ≤ N,

where t1, ..., tN are the transformed Legendre-Gauss quadrature points, i.e. tj =

T (xj + 1)

2
where x′

js , j = 1, ..., N are zeros of LN(i.e. L̂N(xj) = 0) and L′
js are

Legendre polynomials on [0, T ]. It follows that for k = 1, ..., N

(pN − p0)

T
+

N−1∑
j=1

pjLj(tk) = F (pN(tk), q
N(tk))

(qN − q0)

T
+

N−1∑
j=1

qjLj(tk) = G(pN(tk), q
N(tk)),

the system can be written as a matrix equation

Az(t) = F(z(t))

where

A =

 LLL 0

0 LLL

 , LLL =



1 L1(t1) L2(t1) . . . LN−1(t1)

1 L1(t2) L2(t2) . . . LN−1(t2)

...
...

...
. . .

...

1 L1(tN) L2(tN) . . . LN−1(tN)


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z =

 p

q

 =



pN−p0

T

p1

...

pN−1

qN−q0

T

q1

...

qN−1



, F(z) =



−Hq(p
N(t1), q

N(t1))

−Hq(p
N(t2), q

N(t2))

...

−Hq(p
N(tN), qN(tN))

Hp(p
N(t1), q

N(t1))

Hp(p
N(t2), q

N(t2))

...

Hp(p
N(tN), qN(tN))



.

We solve the system by using an iterative method

Aznew = F(zold).

The initial guess and the values at the end point of each interval are evaluated in the

same way as the spectral Tau method with Legendre-Phi.

2.3.2 Spectral Collocation Method with Chebyshev-Phi

In this method, we use a set of trial functions as in section 2.2.2.

ϕ0(t) =
T − t

T
, ϕ1(t) =

t

T
, ϕj(t) =

∫ t

0

Tj−1(s)ds , j = 2, ..., N

We seek for the solutions pN , qN ∈ PN [0, T ], pN(0) = p0 and qN(0) = q0

pN(t) = p0ϕ0(t) + pNϕ1(t) +
N∑

j=2

pj−1ϕj(t)

qN(t) = q0ϕ0(t) + qNϕ1(t) +
N∑

j=2

qj−1ϕj(t)
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such that

dpN

dt
(tk) = F (pN(tk), q

N(tk)) , 1 ≤ k ≤ N,

dqN

dt
(tk) = G(pN(tk), q

N(tk)) , 1 ≤ k ≤ N,

where t1, ..., tN are the transformed Chebyshev-Gauss quadrature points, i.e. tj =

T (xj + 1)

2
where x′

js , j = 1, ..., N are zeros of TN(i.e. TN(xj) = 0) and T ′
js are the

Chebyshev polynomials on [0, T ]. It follows that for k = 1, ..., N

(pN − p0)

T
+

N−1∑
j=1

pjTj(tk) = F (pN(tk), q
N(tk))

(qN − q0)

T
+

N−1∑
j=1

qjTj(tk) = G(pN(tk), q
N(tk)),

the system can be written as a matrix equation

Az(t) = F(z(t))

where

A =

 C 0

0 C

 , C =



1 T1(t1) T2(t1) . . . TN−1(t1)

1 T1(t2) T2(t2) . . . TN−1(t2)

...
...

...
. . .

...

1 T1(tN) T2(tN) . . . TN−1(tN)


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z =

 p

q

 =



pN−p0

T

p1

...

pN−1

qN−q0

T

q1

...

qN−1



, F(z) =



−Hq(p
N(t1), q

N(t1))

−Hq(p
N(t2), q

N(t2))

...

−Hq(p
N(tN), qN(tN))

Hp(p
N(t1), q

N(t1))

Hp(p
N(t2), q

N(t2))

...

Hp(p
N(tN), qN(tN))



.

We solve the system by using an iterative method

Aznew = F(zold).

We keep the same concept on the initial guesses. However,the values at the end-

point of each interval need to be evaluated differently from the previous two methods

with Chebyshev-Phi. In this method, we need to compute the end value by using the

original expansion.

pN(T ) = pN +
N∑

odd j;j=2

pj−1
T

2

[1

j
− 1

j − 2

]
qN(T ) = qN +

N∑
odd j;j=2

qj−1
T

2

[1

j
− 1

j − 2

]
.

If we further consider the system

Az(t) = F(z(t))

we discussed above , we could avoid the inverse of the matrix A by multiplying both
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sides by the transpose of C and the Gaussian weights.

CT WC =


1 1 . . . 1

T1(t1) T1(t2) . . . T1(tN )

.

..
.
..

. . .
.
..

TN−1(t1) TN−1(t2) . . . TN−1(tN )




w1 0 · · · 0

0 w2 · · · 0

.

..
.
..

. . .
.
..

0 0 · · · wN




1 T1(t1) . . . TN−1(t1)

1 T1(t2) . . . TN−1(t2)

.

..
.
..

. . .
.
..

1 T1(tN ) . . . TN−1(tN )

 .

Using the orthogonality of Chebyshev polynomials together with the Gaussian

quadrature, the matrix can be considered as

C̃ = CT WC = [c̃]ij

where

c11 =
N∑

k=1

wk = (T0, T0)T =
T

2
π

cii =
N∑

k=1

wkT
2
i (tk) = (Ti, Ti)T =

T

2

π

2
=

Tπ

4
, i = 2, ..., N − 1

cij =
N∑

k=1

wkTi(tk)Tj(tk) = (Ti, Tj)T = 0 , i 6= j.

We obtain the result by the property of Guassian quadrature. For N Gaussian

points t1, .., tN , the integral is exact for all polynomials whose degree is at most

(2N − 1) [37]. It follows that

C̃ =
T

2



π 0 · · · 0

0 π
2

· · · 0

...
...

. . .
...

0 0 · · · π
2


=

Tπ

4



2 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


.

The system becomes

z̃(t) =
4

Tπ
F̃(z(t))
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where

z̃(t) =

 p

q

 =



2(pN−p0)

T

p1

...

pN−1

2(qN−q0)
T

q1

...

qN−1



, F̃(z) =

 CT W 0

0 CT W





−Hq(p
N(t1), q

N(t1))

−Hq(p
N(t2), q

N(t2))

...

−Hq(p
N(tN), qN(tN))

Hp(p
N(t1), q

N(t1))

Hp(p
N(t2), q

N(t2))

...

Hp(p
N(tN), qN(tN))



.

2.4 Spectral Collocation Methods with Scaling

2.4.1 Spectral Collocation Method with Scaling Legendre-Phi

This method is similar to the spectral collocation method with Legendre-Phi in

section 2.3.1 except the trial functions are those in section 2.3.1 but with the scaling.

ϕ0(t) =
T − t

T
, ϕ1(t) =

t

T
, ϕ̃j(t) =

∫ t

0

L̃j−1(s)ds , j = 2, ..., N

where L̃j(t) =

√
2j + 1

T
Lj(t) so ϕ̃j

′(t) = L̃j(t)

The advantage of these trial functions is that

(L̃i, L̃j)T =

∫ T

0

L̃i(s)L̃j(s)ds =


1 , i = j

0 , otherwise
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We seek for the solutions pN , qN ∈ PN [0, T ], pN(0) = p0 and qN(0) = q0

pN(t) = p0ϕ0(t) + pNϕ1(t) +
N∑

j=2

pj−1ϕ̃j(t)

qN(t) = q0ϕ0(t) + qNϕ1(t) +
N∑

j=2

qj−1ϕ̃j(t)

such that

dpN

dt
(tk) = F (pN(tk), q

N(tk)) , 1 ≤ k ≤ N,

dqN

dt
(tk) = G(pN(tk), q

N(tk)) , 1 ≤ k ≤ N,

where t1, ..., tN are the transformed Legendre-Gauss quadrature points, i.e. tj =

T (xj + 1)

2
where x′

js , j = 1, ..., N are zeros of LN(i.e. LN(xj) = 0) and L′
js are the

Legendre polynomials on [0, T ]. It follows that for k = 1, ..., N

(pN − p0)

T
+

N−1∑
j=1

pjL̃j(tk) = F (pN(tk), q
N(tk))

(qN − q0)

T
+

N−1∑
j=1

qjL̃j(tk) = G(pN(tk), q
N(tk)),

the system can be written as a matrix equation

Az(t) = F(z(t))
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where

A =

 L̃LL 0

0 L̃LL

 , L̃LL =



1 L̃1(t1) L̃2(t1) . . . L̃N−1(t1)

1 L̃1(t2) L̃2(t2) . . . L̃N−1(t2)

...
...

...
. . .

...

1 L̃1(tN) L̃2(tN) . . . L̃N−1(tN)



z =

 p

q

 =



pN−p0

T

p1

...

pN−1

qN−q0

T

q1

...

qN−1



, F(z) =



−Hq(p
N(t1), q

N(t1))

−Hq(p
N(t2), q

N(t2))

...

−Hq(p
N(tN), qN(tN))

Hp(p
N(t1), q

N(t1))

Hp(p
N(t2), q

N(t2))

...

Hp(p
N(tN), qN(tN))



.

We multiply L̃LL by the transpose of L̃LL and Gaussian weights,

L̃LL
T
WL̃LL =


1 1 . . . 1

L̃1(t1)1 L̃1(t2) . . . L̃1(tN )

.

..
.
..

. . .
.
..

L̃N−1(t1) L̃N−1(t2) . . . L̃N−1(tN )




w1 0 · · · 0

0 w2 · · · 0

.

..
.
..

. . .
.
..

0 0 · · · wN




1 L̃1(t1) . . . L̃N−1(t1)

1 L̃1(t2) . . . L̃N−1(t2)

.

..
.
..

. . .
.
..

1 L̃1(tN ) . . . L̃N−1(tN )

 .

Using the orthogonality of Legendre polynomials together with the Gaussian quadra-

ture, and with N Gaussian points, t1, ..., tN , the integral is exact for all polynomials

whose degree is at most (2N − 1) [37]. The matrix can be considered as

L̃LL
T
WL̃LL = [l̃]ij



www.manaraa.com

30

where

l11 =
N∑

k=1

wk = (L0, L0)T = T

lii =
N∑

k=1

wkL̃
2
i (tk) = (L̃i, L̃i)T = 1 , i = 2, ..., N − 1

lij =
N∑

k=1

wkL̃i(tk)L̃j(tk) = (L̃i, L̃j)T = 0 , i 6= j.

We obtain the result by the property of Guassian quadrature. It follows that

L̃LL
T
WL̃LL =



T 0 · · · 0

0 1 · · · 0

...
...

. . .
...

0 0 · · · 1


The system becomes

z̃(t) = F̃(z(t))

where

z̃(t) =

 p

q

 =



pN − p0

p1

...

pN−1

qN − q0

q1

...

qN−1



, F̃(z) =

 L̃LL
T
W 0

0 L̃LL
T
W





−Hq(p
N(t1), q

N(t1))

−Hq(p
N(t2), q

N(t2))

...

−Hq(p
N(tN), qN(tN))

Hp(p
N(t1), q

N(t1))

Hp(p
N(t2), q

N(t2))

...

Hp(p
N(tN), qN(tN))



.
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We solve the system by using an iterative method

˜znew(t) = F̃(zold(t)).

The initial guess and the values at the end point of each interval are evaluated in the

same way as the spectral Tau method with Legendre-Phi.

2.5 Spectral Tau with Legendre-Phi using Newton Iteration

Let ~p = (pN , p1, ..., pN−1)
T , and ~q = (qN , q1, ..., qN−1)

T . These ~p and ~q are coefficient

vectors of a solution pN and qN . With Newton iteration, we will consider the iteration

of ~p, ~q. This means the Jacobian matrix is with respect to the coefficients pi, qi, where

i = 1, ..., N , of ~p, ~q. The system can be written as

F =

 D 0

0 D


 ~p

~q

 −

 ~p0

~q0

 −

 (−Hq(~p, ~q),L)

(Hp(~p, ~q),L)

 = 0

where

D =



1 0 · · · 0

0 T
3

0

...
. . .

...

0 · · · T
2N−1


, ~p0 =



p0

0

...

0


, ~q0 =



q0

0

...

0


, L =



L0

L1

...

LN−1


The iteration is ~p

~q


(k+1)

=

 ~p

~q


(k)

− [∇F(~p(k), ~q(k))]−1F(~p(k), ~q(k))
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NOTE: Here we need to find ∇F with respect to the coefficients pi’s and qi’s.

∇F(~p, ~q) =

 D 0

0 D

 −

 H1 H2

H3 H4


where

H1 =



(−HqpN (~p, ~q), L0) (−Hqp1(~p, ~q), L0) · · · (−HqpN−1(~p, ~q), L0)

(−HqpN (~p, ~q), L1) (−Hqp1(~p, ~q), L1) · · · (−HqpN−1(~p, ~q), L1)

...
...

. . .
...

(−HqpN (~p, ~q), LN−1) (−Hqp1(~p, ~q), LN−1)) · · · (−HqpN−1(~p, ~q), LN−1))



H1 =



(−Hqp(pN , qN )ϕ1, L0) (−Hqp(pN , qN )ϕ2, L0) · · · (−Hqp(pN , qN )ϕN , L0)

(−Hqp(pN , qN )ϕ1, L1) (−Hqp(pN , qN )ϕ2, L1) · · · (−Hqp(pN , qN )ϕN , L1)

...
...

. . .
...

(−Hqp(pN , qN )ϕ1, LN−1) (−Hqp(pN , qN )ϕ2, LN−1) · · · (−Hqp(pN , qN )ϕN , LN−1)



H2 =



(−HqqN (~p, ~q), L0) (−Hqq1(~p, ~q), L0) · · · (−HqqN−1(~p, ~q), L0)

(−HqqN (~p, ~q), L1) (−Hqq1(~p, ~q), L1) · · · (−HqqN−1(~p, ~q), L1)

...
...

. . .
...

(−HqqN (~p, ~q), LN−1) (−Hqq1(~p, ~q), LN−1)) · · · (−HqqN−1(~p, ~q), LN−1))



H2 =



(−Hqq(pN , qN )ϕ1, L0) (−Hqq(pN , qN )ϕ2, L0) · · · (−Hqq(pN , qN )ϕN , L0)

(−Hqq(pN , qN )ϕ1, L1) (−Hqq(pN , qN )ϕ2, L1) · · · (−Hqq(pN , qN )ϕN , L1)

...
...

. . .
...

(−Hqq(pN , qN )ϕ1, LN−1) (−Hqq(pN , qN )ϕ2, LN−1) · · · (−Hqq(pN , qN )ϕN , LN−1)


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H3 =



(HppN (~p, ~q), L0) (Hpp1(~p, ~q), L0) · · · (HppN−1(~p, ~q), L0)

(HppN (~p, ~q), L1) (Hpp1(~p, ~q), L1) · · · (HppN−1(~p, ~q), L1)

...
...

. . .
...

(HppN (~p, ~q), LN−1) (Hpp1(~p, ~q), LN−1)) · · · (HppN−1(~p, ~q), LN−1))



H3 =



(Hpp(pN , qN )ϕ1, L0) (Hpp(pN , qN )ϕ2, L0) · · · (Hpp(pN , qN )ϕN , L0)

(Hpp(pN , qN )ϕ1, L1) (Hpp(pN , qN )ϕ2, L1) · · · (Hpp(pN , qN )ϕN , L1)

...
...

. . .
...

(Hpp(pN , qN )ϕ1, LN−1) (Hpp(pN , qN )ϕ2, LN−1) · · · (Hpp(pN , qN )ϕN , LN−1)



H3 =



(HpqN (~p, ~q), L0) (Hpq1(~p, ~q), L0) · · · (HpqN−1(~p, ~q), L0)

(HpqN (~p, ~q), L1) (Hpq1(~p, ~q), L1) · · · (HpqN−1(~p, ~q), L1)

...
...

. . .
...

(HpqqN (~p, ~q), LN−1) (Hpq1(~p, ~q), LN−1)) · · · (HpqN−1(~p, ~q), LN−1))



H3 =



(Hpq(pN , qN )ϕ1, L0) (Hpq(pN , qN )ϕ2, L0) · · · (Hpq(pN , qN )ϕN , L0)

(Hpq(pN , qN )ϕ1, L1) (Hpq(pN , qN )ϕ2, L1) · · · (Hpq(pN , qN )ϕN , L1)

...
...

. . .
...

(Hpq(pN , qN )ϕ1, LN−1) (Hpq(pN , qN )ϕ2, LN−1) · · · (Hpq(pN , qN )ϕN , LN−1)



Notes:

1) For a linear Hamiltonian system, we could solve the system explicitly.

2) There are several iterative methods that could be applied. We chose a simple

iterative method and the Newton iteration for our systems.
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3 Error Analysis

Consider a canonical linear Hamiltonian system defined by a quadratic Hamilto-

nian

H =
1

2
zT Lz

where L is a 2d × 2d, d is degree of freedoms, symmetric matrix and z = [p,q]T .

If we consider H as energy, H then needs to be positive which implies L is a

positive definite matrix. The corresponding equation of motion is given by

dz

dt
= J−1Lz

where J =

 0 Id

Id 0

 and J−1 = −J .

For simplicity, we will consider the case d = 1, i.e. z = [p, q]T , L =

 d a

a b

.

L is positive definite. It follows automatically that d > 0, b > 0, bd > a2. WLOG,

we take a ≥ 0. The analysis is similar for the case that a < 0. Here

H =
1

2
[p q]

 d a

a b


 p

q

 =
1

2
dp2 +

1

2
bq2 + apq.

The Hamiltonian system becomes

dp

dt
= −Hq = −ap − bq

dq

dt
= Hp = dp + aq.
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Consider a linear Hamiltonian system with p(0) = p0 and q(0) = q0,

dp

dt
= −ap − bq

dq

dt
= dp + aq (3.1)

Here a, b, d > 0 from the previous section.

3.1 Spectral Tau Method with Gauss-Lobatto points and

Chebyshev Polynomials

Weak Form: Find p − p0, q − q0 ∈ H1
(0[0, T ] = {u ∈ H1[0, T ] : u(0) = 0} such that

(p′, v) = −a(p, v) − b(q, v) , ∀v, wH1
(0[0, T ]

(q′, w) = d(p, w) + a(q, w) , (3.2)

Variational Form : Find pN , qN ∈ PN [0, T ], pN(0) = p0 and qN(0) = q0 such that

(p′N , v) = −a(pN , v) − b(qN , v) ,∀v ∈ PN [0, T ], v(0) = 0

(q′N , w) = d(pN , w) + a(qN , w) , ∀w ∈ PN [0, T ], w(0) = 0 (3.3)

3.1.1 Error Analysis for a Linear System

Subtract (3.3) from (3.2)

(p′ − p′N , v) = −a(p − pN , v) − b(q − qN , v)

(q′ − q′N , w) = d(p − pN , w) + a(q − qN , w) (3.4)

Choose the interpolation that INp(0) = p0 so INp(0) − pN(0) = 0 and similarly

for space of w.
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Take v = INp − pN , w = INq − qN so v(0) = 0 = w(0).

(p′ − p′N , INp − pN) = −a(p − pN , INp − pN) − b(q − qN , INp − pN)

(q′ − q′N , INq − qN) = d(p − pN , INq − qN) + a(q − qN , INq − qN) (3.5)

L2−projection property:

(p − ΠNp, v) = 0 ,∀v ∈ PN

Similarly (p′ − ΠNp′, v) = 0 ,∀v ∈ PN

⇒ (p, v) = (ΠNp, v) and similarly (p′, v) = (ΠNp′, v).

Then (p′ − p′N , v) = (ΠNp′ − p′N , v),∀v ∈ PN .

Then (3.5) becomes

(ΠNp′ − p′N , INp − pN) = −a(p − pN , INp − pN) − b(q − qN , INp − pN)

(ΠNq′ − q′N , INq − qN) = d(p − pN , INq − qN) + a(q − qN , INq − qN) (3.6)

Multiply the first equation by d and the second by b.

d(ΠNp′ − p′N , INp − pN) = −ad(p − INp + INp − pN , INp − pN)

−bd(q − INq + INq − qN , INp − pN)

b(ΠNq′ − q′N , INq − qN) = bd(p − INp + INp − pN , INq − qN)

+ab(q − INq + INq − qN , INq − qN) (3.7)

Add the two equation with a cancelation.

d(ΠNp′−p′N , INp−pN)+b(ΠNq′−q′N , INq−qN) = −ad(p = INp, INp−pN)−ad‖INp−pN‖2
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−bd(q − INq, INp − pN) + bd(p − INp, INq − qN)

+ab(q − INq, INq − qN) + ab‖INq − qN‖2 (3.8)

Let Ep
N = INp − pN and Eq

N = INq − qN .The right hand side becomes

R.H.S = −ad(p − INp, Ep
N) − ad‖Ep

N‖
2 − bd(q − INq, Ep

N) + bd(p − INp, Eq
N)

+ab(q − INq, Eq
N) + ab‖Eq

N‖
2

By Hölder’s Inequality,

R.H.S ≤ ad‖INp − p‖‖Ep
N‖ − ad‖Ep

N‖2 + bd‖INq − q‖‖Ep
N‖2 + bd‖INp − p‖‖Eq

N‖2

+ab‖INq − q‖‖Eq
N‖2 + ab‖Eq

N‖2

By Young’s Inequality,

R.H.S ≤ (
ad

2
+

bd

2
)‖INp − p‖2 + (

bd

2
+

ab

2
)‖INq − q‖2 + +(

ad

2
+ ad +

bd

2
)‖Ep

N‖
2

+(
bd

2
+

ab

2
+ ab)‖Eq

N‖
2

= (
ad + bd

2
)‖INp − p‖2 + (

ab + bd

2
)‖INq − q‖2 + (

3ad

2
+

bd

2
)‖Ep

N‖
2 + (

3ab

2
+

bd

2
)‖Eq

N‖
2

L.H.S. = d(ΠNp′ − p′N , Ep
N) + b(ΠNq′ − q′N , Eq

N)

= d(ΠNp′ − (INp)′ + (INp − pN)′, Ep
N) + b(ΠNq′ − (INq)′ + (INq − qN)′, Eq

N)

= d(ΠNp′ − (INp)′, Ep
N) + d(

d

dt
Ep

N , Ep
N) + b(ΠNq′ − (INq)′, Eq

N) + b(
d

dt
Eq

N , Eq
N)
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All together with Hölder’s and Young’s Inequality,

d(
d

dt
Ep

N , Ep
N) + b(

d

dt
Eq

N , Eq
N) ≤ d

2
‖ΠNp′ − (INp)′‖2 +

d

2
‖Ep

N‖
2 +

b

2
‖ΠNq′ − (INq)′‖2 +

b

2
‖Eq

N‖
2

+(
ad + bd

2
)‖INp − p‖2 + (

ad + bd

2
)‖INq − q‖2

+(
3ad

2
+

bd

2
)‖Ep

N‖
2 + (

3ab

2
+

bd

2
)‖Eq

N‖
2

=
d

2
‖ΠNp′ − (INp)′‖2 +

b

2
‖ΠNq′ − (INq)′‖2

+(
ad + bd

2
)‖INp − p‖2 + (

ad + bd

2
)‖INq − q‖2

+
d

2
(1 + 3a + b))‖Ep

N‖
2 +

b

2
(1 + 3a + d))‖Eq

N‖
2

Let D = max{b, d}.

d(
d

dt
Ep

N , Ep
N) + b(

d

dt
Eq

N , Eq
N) ≤ d

2
‖ΠNp′ − (INp)′‖2 +

b

2
‖ΠNq′ − (INq)′‖2

+(
ad + bd

2
)‖INp − p‖2 + (

ad + bd

2
)‖INq − q‖2

+(
1 + 3a + D

2
)[d‖Ep

N‖
2 + b‖Eq

N‖
2]

Use Fundamental Theorem of Calculus(A1) for L.H.S with Ep
N(0) = 0 and Eq

N(0) = 0.

dEp
N(T ) + bEq

N(T ) ≤ d‖ΠNp′ − (INp)′‖2 + b‖ΠNq′ − (INq)′‖2

+(ad + bd)‖INp − p‖2 + (ad + bd)‖INq − q‖2

+(1 + 3a + D)[d‖Ep
N‖

2 + b‖Eq
N‖

2]

We then apply the Gronswall’s inequality A2 on [0,T] with ϕ(t) = d[Ep
N(t)]2 +

b[Eq
N(t)]2 ,

r0 = d‖ΠNp′−(INp)′‖2+b‖ΠNq′−(INq)′‖2+(ad+bd)‖INp−p‖2+(ad+bd)‖INq−
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q‖2 and k = 1 + 3a + D so

d‖Ep
N‖

2 + b‖Eq
N‖

2 =

∫ T

0

d[Ep
N(s)]2 + b[Eq

N(s)]2ds =

∫ T

0

ϕ(s)ds.

The upper bound becomes

dEp
N(T ) + bEq

N(T ) ≤
[
d‖ΠNp′ − (INp)′‖2 + b‖ΠNq′ − (INq)′‖2

+(ad + bd)‖INp − p‖2 + (ad + bd)‖INq − q‖2
]
e(1+3a+D)T

From A7, we have

dEp
N(T ) + bEq

N(T ) ≤ C
( TAe

8(N + 1)

)2N

e(1+3a+D)T (3.9)

Next we estimate the end-point error d|(p − pN)(T )|2 + b|(q − qN)(T )|2.

d|(p − pN)(T )|2 + b|(q − qN)(T )|2 ≤ d[|(p − INp)(T )| + |(INp − pN)(T )|]2

+b[|(q − INq)(T )| + |(INq − qN)(T )|]2

With Young’s inequality,

d|(p − pN)(T )|2 + b|(q − qN)(T )|2 ≤ 2d|(INp − p)(T )|2 + 2b|(INq − q)(T )|2

+2d|(INp − pN)(T )|2 + 2b|(INq − qN)(T )|2. (3.10)

We approximate the last two terms with (3.9). For the first two term on the

right side, we use the property A3, A5.1, A5.2,A6.1 and a regularity assumption

[54, 55, 56] |pk(t)| ≤ cMk, |qk(t)| ≤ cRk provided that p and q satisfying condition
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(M) or (R).

|(INp − p)(T )| ≤ maxt∈[0,T ]|INp(t) − p(t)|

≤ C(‖INp − p‖T + ‖ d

dt
(INp − p)‖T )

≤ C
[
C1

( TMe

4(N + 1)

)N+1

+ C2

( TMe

8(N + 1)

)N]
|(INp − p)(T )| ≤ C

( TMe

4(N + 1)

)N

(3.11)

Similarly, |(INq − q)(T )| ≤ C
( TRe

4(N + 1)

)N

. (3.12)

With (3.9), (3.11) and (3.12), the inequality (3.10) becomes

d|(p − pN)(T )|2 + b|(q − qN)(T )|2 ≤ C
( TAe

8(N + 1)

)2N

+ e(1+3a+D)T
( TAe

8(N + 1)

)2N

d|(p − pN)(T )|2 + b|(q − qN)(T )|2 ≤ Ce(1+3a+D)T
( TAe

8(N + 1)

)2N

(3.13)

3.1.2 Error Analysis for a Nonlinear System

For nonlinear system, we need to establish some condition of the right hand side

of equation in order to achieve the upper bound.

p′(t) = −∂H

∂q
= F (p, q)

q′(t) =
∂H

∂p
= G(p, q) (3.14)

Variational Form : Find pN , qN ∈ PN [0, T ], pN(0) = p0 and qN(0) = q0 such that

(p′N , v) = (F (pN , qN), v), ∀v ∈ PN [0, T ], v(0) = p0

(q′N , w) = (G(pN , qN), w) , ∀w ∈ PN [0, T ], w(0) = q0 (3.15)
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(3.14)-(3.15);

(p′ − p′N , v) = (F (p, q) − F (pN , qN), v)

(q′ − q′N , w) = (G(p, q) − G(pN , qN), w) (3.16)

Choose the interpolation that INp(0) = p0 so INp(0) − pN(0) = 0 and similarly

for space of w.

Take v = INp − pN , w = INq − qN .

(p′ − p′N , INp − pN) = (F (p, q) − F (pN , qN), INp − pN)

(q′ − q′N , INq − qN) = (G(p, q) − G(pN , qN), INq − qN) (3.17)

Use L2 projection property,

(ΠNp′ − p′N , INp − pN) = (F (p, q) − F (pN , qN), INp − pN)

(ΠNq′ − q′N , INq − qN) = (G(p, q) − G(pN , qN), INq − qN)

(ΠNp′ − (INp)′ + (INp)′ − p′N , INp − pN ) = (F (p, q) − F (INp, INq) + F (INp, INq) − F (pN , qN ), INp − pN )

(ΠNq′ − (INq)′ + (INq)′ − q′N , INq − qN ) = (G(p, q) − G(INp, INq) + G(INp, INq) − G(pN , qN ), INq − qN )

(INp)′ − p′N , INp − pN ) = (F (p, q) − F (INp, INq), INp − pN ) + (F (INp, INq) − F (pN , qN ), INp − pN )

−(ΠNp′ − (INp)′, INp − pN )

(INq)′ − q′N , INq − qN ) = (G(p, q) − G(INp, INq), INq − qN ) + (G(INp, INq) − G(pN , qN ), INq − qN )

−(ΠNq′ − (INq)′, INq − qN ) (3.19)

Let Ep
N = INp − pN and Eq

N = INq − qN . With Ep
N(0) = 0 and Eq

N(0) = 0.

On the left hand side,
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(INp)′ − p′N , INp − pN) = 1
2
(Ep

N(T ))2 and (INq)′ − q′N , INq − qN) = 1
2
(Eq

N(T ))2

Add the two equations and apply Hölder and Young’s inequalities

1

2
(Ep

N(T ))2 +
1

2
(Eq

N(T ))2 ≤ 1

2
‖F (p, q) − F (INp, INq)‖2 +

1

2
‖F (INp, INq) − F (pN , qN)‖2

+
3

2
‖Ep

N‖2 +
1

2
‖ΠNp′ − (INp)′‖2 +

1

2
‖G(p, q) + G(INp, INq)‖2

+
1

2
‖G(INp, INq) − G(pN , qN)‖2 +

3

2
‖Eq

N‖2 +
1

2
‖ΠNq′ − (INq)′‖2

(Ep
N(T ))2 + (Eq

N(T ))2 ≤ ‖F (p, q) − F (INp, INq)‖2 + ‖G(p, q) − G(INp, INq)‖2

+‖F (INp, INq) − F (pN , qN)‖2 + ‖G(INp, INq) − G(pN , qN)‖2

+3(‖Ep
N‖2 + ‖Eq

N‖2) + ‖ΠNp′ − (INp)′‖2 + ‖ΠNq′ − (INq)′‖2

We consider the first four terms in two cases. We use Euclidean norm for the

following cases.

Case 1:In this case, ~f = (F,G)T satisfies the condition that for any ~z1 = (p1, q1)
T

and ~z2 = (p2, q2)
T ,

‖~f(~z1, t) − ~f(~z2, t)‖2 ≤ α‖~z1 − ~z2‖2 , α > 0

i.e.

√
(F (p1, q1, t) − F (p2, q2, t))2 + (G(p1, q1, t) − G(p2, q2, t))2 ≤ α

√
(p1 − p2)2 + (q1 − q2)2

It follows that

(Ep
N(T ))2 + (Eq

N(T ))2 ≤
∫ T

0

(F (p, q) − F (INp, INq))2 + (G(p, q) − G(INp, INq))2dt∫ T

0

(F (INp, INq) − F (pN , qN))2 + +(G(INp, INq) − G(pN , qN))2dt

+3(‖Ep
N‖2 + ‖Eq

N‖2) + ‖ΠNp′ − (INp)′‖2 + ‖ΠNq′ − (INq)′‖2
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If F and G satisfy the given condition, we have

(Ep
N(T ))2 + (Eq

N(T ))2 ≤ α2(‖INp − p)‖2 + ‖INq − q)‖2) + α2(‖Ep
N‖

2 + ‖Eq
N‖

2)

+3(‖Ep
N‖

2 + ‖Eq
N‖

2) + ‖ΠNp′ − (INp)′‖2 + ‖ΠNq′ − (INq)′‖2

= α2(‖INp − p)‖2 + ‖INq − q)‖2) + ‖ΠNp′ − (INp)′‖2

+‖ΠNq′ − (INq)′‖2 + (α2 + 3)(‖Ep
N‖

2 + ‖Eq
N‖

2)

By using Gronswall’s Theorem A.2 and A6.1,A7

(Ep
N(T ))2 + (Eq

N(T ))2 ≤ [α2(‖INp − p)‖2 + ‖INq − q)‖2) + ‖ΠNp′ − (INp)′‖2

+‖ΠNq′ − (INq)′‖2]e(α2+3)T

≤ C
( TAe

8(N + 1)

)N

Case 2:In this case, ~f = (F,G)T satisfies the condition that for any ~z1 = (p1, q1)
T

and ~z2 = (p2, q2)
T ,

(~f(~z1, t) − ~f(~z2, t)) · (~z1 − ~z2) ≤ −α‖~z1 − ~z2‖2 , α > 0

We also have error estimate which is similar to case 1.
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4 Numerical Results

In this numerical study, we are interested in a long-time behavior of the Hamilto-

nian system, which many science and engineering problems need to predict, see, e.g.,

[32, 33, 34, 27]. Traditional finite difference, finite element, and the Runge-Kutta

methods fail when time runs sufficiently large; even for the symplectic structure-

preserving algorithms. Our numerical tests on Hamiltonian systems demonstrate

that the spectral methods preserve both energy and volume very well even for a large

value of t. The numerical solution follows the trajectory nicely without a phase shift.

For the numerical examples below, we use T = 1 for the spectral collocation.

The reasonable values for T are within the interval [0.75, 2]. However, the convenient

value is T = 2 (without any translation). In each updating process, we compare the

maximum pointwise errors,

max
1≤j≤N

(‖(pppnew − pppold)(tj)‖L∞ , ‖(qqqnew − qqqold)(tj)‖L∞)

and set the tolerance as 10−15 together with maximum iteration numbers, 1000, to

terminate the iterative process. The initial guesses to start the spectral methods are

(N × 1) vectors (p0, ..., p0)
T and (q0, ..., q0)

T where p0, q0 are the initial values.

We compare the numerical results from different spectral methods in Chapter 2

with the collocation method from Guo-Wang using Legendre’s recursive relation [31].

We also compare the spectral collocation method (with the differentiation matrix)

with the results from symplectic methods provided in the Appendix. In a linear case,

we compare the exact solution with the numerical solution by using the maximum



www.manaraa.com

45

pointwise norm,

‖(ppp − pppN)(tj)‖L∞ , ‖(qqq − qqqN)(tj)‖L∞ , ‖HHH(tj) −HHH0‖L∞

on the terminal interval. However, for a nonlinear system, we compare only the

energy H(p(t), q(t)) to the initial energy H0 = H(p(0), q(0)) by using the maximum

pointwise norm

‖HHH(tj) −HHH0‖L∞

as well.

Symplectic schemes 1, 2, 3 and 4 are second order schemes where scheme 1 is a

second order midpoint Euler scheme and scheme 3 and 4 are specially designed for

the threefold symmetry and Henon-Heiles systems, respectively. The comparison of

the CPU times (after the graphic outputs) used from collocation with Chebyshev

differentiation matrix and symplectic methods is considered by using Lenovo X61,

Core 2 Duo 1.8GHz, RAM 3GB, Window Vista; and for the other spectral methods

is by using Lenovo X61, Core 2 Duo 1.8GHz, RAM 3GB, Window 7.

In coding, for the spectral collocation with differentiation matrix, we store D̃−1

since it will be used repeatedly, in some cases, billions of times. It is well known that

the condition number of D̃ is O(N2). For relatively large values of N , it would be

ideal to develop an explicit formula for D̃−1 instead of inverting the explicit form of

D̃. Similarly, we store the matrix LLL for Legendre polynomials and ΦΦΦ. The condition

numbers of LLL and ΦΦΦ are discussed in Chapter 5.
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4.1 Linear Hamiltonian System

Example 1: Consider a linear system of ordinary differential equations

p′(t) = −4q(t)

q′(t) = p(t)

with initial condition p(0) = 0, q(0) = 0.6.

The Hamiltonian for this system is given by H(p, q) = 1
2
p2 + 2q2. The exact

solutions are p(t) = −1.2 sin(2t) and q(t) = 0.6 cos(2t). The initial energy H(p0, q0) =

H0 = 0.72.

The numerical methods for a linear system can be practically solved explicitly

without using an iterative method. We achieve a much better result by solving the

system explicitly. We first compare the collocation method with Chebyshev differ-

entiation matrix D, symplectic schemes 1 and 2 then we compare the results among

the spectral methods. Figure 1 represents the end behavior of each method. From

the graphs, we can barely see the difference between the exact and numerical solu-

tions from the spectral collocation (t = 106) while the phase shift is visible for the

symplectic methods at t = 2000.

Figures below shows the error propagations of three different methods. The errors

oscillate evenly through out the interval and within the range of 10−11. The two

collocation methods, collocation with Legendre-Phi and Guo-Wang, have a similar

pattern while the error from the Tau method with Legendre-Phi propagates in a

pattern that is dense in the middle. This means the error is very small throughout
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Figure 1: Graphs of solution p, q versus t by (a) spectral collocation with Chebyshev

differentiation matrix when N = 20 on [106 − 1, 106] (p:-o-,q:-x-); (b) symplectic 1,

h=0.01 on [1998,2000] (p:dash,q:dot); (c) symplectic 2, h=0.01 on [1998,2000]
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the interval.
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Figure 2: Error propagations by Tau method with Legendre-Phi when when N = 15

(a) (pN(ti) − p(ti)) versus t (b) (qN(ti) − q(ti)) versus t (c) (HN(ti) − H0) versus t.
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Figure 3: Patterns of errors by collocation method with Legendre-Phi when N = 15

(a) (pN(ti) − p(ti)) versus t (b) (qN(ti) − q(ti)) versus t (c) (HN(ti) − H0) versus t.
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Figure 5 shows the rates of convergence of the numerical error for p from both

methods. The spectral collocation method with Chebyshev differentiation matrix D

gives a super-exponential rate [54, 55]. The convergence rate is of order ( 1
N

)(0.75N) for

the spectral collocation and h2 for the symplectic scheme 1 (second order scheme).
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Figure 5: (a) Collocation method, N=5,6,...,17 on [0,10]; (b) symplectic

1,h=0.05,0.1,...,0.5 on [0,10].

In the next Figures, we compare the spectral methods discussed in Chapter 2.

The results can be compared with the symplectic methods by using the result of the

collocation method with differentiation matrix as a reference graph.

Figure 6 shows the convergence rates of the endpoint error of five different meth-

ods; Guo-Wang, Tau with Legendre-Phi , collocation with Legendre-Phi, collocation

with Legendre-Phi-Scaling and collocation with Chebyshev differentiation matrix on

[0,10] and [0,100] consecutively. Spectral Tau with Legendre-Phi gives the best con-

vergence rate among all the methods. It shows a stable error trend when the error

approaches the machine epsilon ( 10−14) or when N ≥ 9 while the error from Guo-
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Wang method gives an oscillate tale. The collocation method with Legendre-Phi as

basis functions is better than the collocation method with differentiation matrix but

still loses to Spectral Tau with Legendre-Phi. Figure 6 (b) represents the convergence

rate, when the endpoint t is larger, t ∈ [0, 100]. The results are almost the same at

the beginning then they start to shift when N = 5.

The convergence rate,
√

(p(T ) − pN(T ))2 + 4(q(T ) − qN(T ))2, versus N of Tau

method with Legendre-Phi is shown in Figure 8. From the theoretical result, it is of

the order e(1+3a+D)T
(

TAe
4(N+1)

)2N

where a = 0, D = 4, A = 2, T = 1 , i.e.

√
(p(T ) − pN(T ))2 + 4(q(T ) − qN(T ))2 ≤ e5

( 2e

4(N + 1)

)2N

.

However, the result shown in Figure 7 is of the order 2N + 0.75 which is better than

the theoretical result.
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Figure 6: Errors of |p(T )−pN (T )| with respect to N (a) on [0,10] (b) on [0,100] by using 1)

Guo-Wang(red-o) 2) Tau(black-*) with Phi 3) collocation with Phi(pink-o) 4) collocation

with Phi-Scaling(green-o) 5) collocation with differentiation matrix(yellow-o).
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Figure 7: Errors of
√

(p(T ) − pN (T ))2 + 4(q(T ) − qN (T ))2 (blue-o) and

5e5(
2e

8(N + 1)
)(1.6N) (green) with respect to N on [0,100] by using Tau method with

Legendre-Phi.

We next make a further comparison by considering the CPU times used by each

method. Tables 1 and 2 provide the maximum errors of energy H, p(t), q(t), and the

CPU times used on the end interval. The spectral collocation method provides more

nodal data with similar CPU times, or can go further in term of time t than a simple

symplectic method as shown in Table 1. This means the spectral collocation method

with Chebyshev differentiation matrix is less expensive in a long run compared with

a simple symplectic method. Table 2 shows the CPU times used when the end point

is fixed as t = 100. With a low number of collocation points N and small step size h

(symplectic), the errors are almost the same from both methods. However, the CPU

times used for the symplectic method are much longer than those from the spectral

method.

Table 3 shows the comparison of the CPU times, number of iterations on the last

interval and terminal errors among the spectral methods when N = 10 on [0, 100].
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The Tau method gives the same order of errors as the method from Guo-Wang [31].

However, for a linear case, the system can be solved explicitly using the Tau method.

As a result, the CPU times for the Tau method are better than Guo-Wang. The

other three collocation methods, though better than the symplectic 1 or 2, still lose

to the Tau method.

time(secs) Error in Energy Error in p(t) Error in q(t)

Colloc. N=20,[0, 105] 621 2.294946 × 10−10 2.228963 × 10−10 9.142997 × 10−10

Symp 1,h=0.01 [0,2000] 484 2.884887 × 10−3 7.999879 × 10−2 6.323009 × 10−1

Symp 1,h=0.01,[0,2350] 642 3.391444 × 10−3 9.409463 × 10−2 4.703431 × 10−2

Symp 1,h=0.01,[0, 105] > 6hrs

Symp 2,h=0.01,[0,2000] 445 7.200007 × 10−7 4.001598 × 10−2 3.160331 × 10−1

Symp 2,h=0.01,[0,2250] 603 7.200007 × 10−7 7.090428 × 10−1 3.543846 × 10−1

Symp 2,h=0.01,[0, 105] > 5hrs

Table 1: Comparison of the CPU times between the three methods.

time(secs) Error in Energy Error in p(t) Error in q(t)

Colloc.,N=8,[0,100] 0.35 6.185243 × 10−6 5.631718 × 10−6 2.062186 × 10−7

Symp 1,h=0.001,[0,100] 78.29 7.188678 × 10−7 3.958494 × 10−5 1.994939 × 10−5

Symp 1,h=0.0008,[0,100] 191.98 4.600998 × 10−7 2.533450 × 10−5 1.276760 × 10−5

Symp 1,h=0.0001,[0,100] 591.45 1.796755 × 10−7 9.896375 × 10−6 4.987343 × 10−6

Table 2: Comparison of the CPU times between the two methods with the same order

of errors.
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Spectral Methods time(secs) Error in Energy Error in p(t) Error in q(t)

Colloc. with D matrix 0.46 1.364651 × 10−8 1.258733 × 10−8 2.786321 × 10−10

Tau with Legendre-Phi 0.099 2.442490 × 10−15 3.130828 × 10−14 3.014255 × 10−14

Colloc. with Legendre-Phi 0.063 2.025812 × 10−11 9.823919 × 10−12 8.8107854 × 10−12

Colloc. with L-Phi scaling 1.86 2.026090 × 10−11 9.810818 × 10−12 8.825662 × 10−12

Guo-Wang 0.54 5.317968 × 10−14 2.198241 × 10−14 2.575717 × 10−14

Table 3: Comparisons of the CPU times, number of iterations on the last interval

and the terminal errors among the spectral methods when N = 10 on [0, 100].

Spectral Methods time(secs) Error in Energy Error in p(t) Error in q(t)

Colloc. with D matrix 2913 1.629202 × 10−10 5.394734 × 10−11 6.998968 × 10−11

Tau with Legendre-Phi 1718 3.571365 × 10−12 3.606229 × 10−11 2.002842 × 10−13

Colloc. with Legendre-Phi 2549 1.168842 × 10−12 9.823919 × 10−12 9.026113 × 10−12

Guo-Wang 0.54 5.317968 × 10−14 2.198241 × 10−14 2.575717 × 10−14

Table 4: Comparisons of the CPU times, number of iterations on the last interval

and the terminal errors among the spectral methods when N = 15 on [0, 100000].
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4.2 Nonlinear Hamiltonian Systems

Example 2: Consider a system with a Hamiltonian H(p, q) = p2 − q2 + q4 [21].

The corresponding system of nonlinear ODEs is

p′(t) = −∂H

∂q
= 2q − 4q3

q′(t) =
∂H

∂p
= 2p

with initial condition p(0) = p0, q(0) = q0.

There are three equilibrium points for this system: E1 = (p̄, q̄) = 0, E2 = (0, 1√
2
)

and E3 = (0,− 1√
2
). The zero equilibrium point is a saddle point and the other two

are centers. As a result, we have to be careful when we choose initial values for our

system in order to avoid the neighborhood of (0, 0). The iterative method will not

converge otherwise.

For the spectral collocation with Chebyshev differentiation matrix, the range of

the initial condition for q that can be used in order for the numerical solution to

converge is approximately from 0.625 to 0.88. For the oscillatory behavior, we choose

q0 within 0.625-0.7 and 0.715-0.88. If we choose a number close to the equilibrium

(0, 0.7071067811865475), we will get almost a straight line. The initial values were

chosen as p0 = 0, q0 = 0.73. This gives H(p0, q0) = H0 = −0.24891758.

We begin with the comparison of a sixth-order symplectic method and collocation

with the differentiation matrix. Figure 9 represents phase plots of p and q. We can

see that with symplectic 1, the loop is thicker (there is a phase shift) and with the

spectral collocation method, the loop is thinner and sharper. The other spectral
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methods give a similar result to Figure 8 (a) and (c).
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Figure 8: Phase plots q versus p by (a) spectral collocation when N = 30 on [0, 3000];

(b) symplectic 1 h=0.0001 on [0,50]; (c) symplectic sixth order h=0.01 on [0,3000].

Figures 9, 10 and 11 show the propagations of errors in energy at the nodal points

|H(ti)−H0| of different methods. From the Figures, we observe that the errors from

the spectral collocation method with Chebyshev-Differentiation matrix and Guo-wang

method increase as t increases whereas the errors of the collocation and Tau methods

with Legendre-Phi keep the same pattern all the way to the end point (t = 10000).

From this observation, we compare the maximum pointwise errors in energy rather

than the errors at the terminal point.

Figures 12 shows the difference of the errors at the terminal point(a) the maximum

pointwise errors in energy(b). The errors of the collocation methods and Tau methods

with Legendre-Phi depend on the terminal point chosen.

The convergence rates of the energy H for both methods are shown in Figure

13. The rate is ( 1
N

)(0.6N) for the spectral collocation, O(h2) for the symplectic

scheme 2, and O(h6) for the sixth order symplectic scheme. Figure 14 represents

the convergence rate of Tau method with Legendre-Phi. The rate is of the order

0.25e0.5(
e

4(N + 1)
)(

4√
N3) approximately.
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Figure 9: Patterns of errors |H(ti) − H0| versus t on [0,10000] when N = 15 by (a)

collocation method with Chebyshev-Differentiation matrix (b) collocation method

with Legendre-Phi.
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Figure 10: Patterns of errors |H(ti) − H0| versus t on [0,10000] when N = 15 by (a)

Tau method with Legendre-Phi (b) Guo-Wang.
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Figure 11: Patterns of errors |H(ti) − H0| versus t on [0,10000] when N = 15 by

(a) Tau method with Legendre-Phi(Scaling) (b) collocation method with Legendre-

Phi(Scaling).
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Figure 12: (a)Errors of |H0 −HN (T )| and (b) ‖HHH(tj)−HHH0‖L∞ with respect to N on [0,10]

by using 1) Guo-Wang(red-o) 2) Tau(black-*) with Phi 3) Tau(black-*) with Phi-Newton

4) collocation with Phi(x)(pink-o) 5) collocation with Phi(x)-Scaling(green-o) 6) collocation

with differentiation matrix(yellow-o) matrix.
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Figure 13: (a)Error in H and ( 1
N

)(0.6N) versus N = 5, 6, ..., 16 by spectral collocation

on [0, 10](b) Error in H by symplectic 2 with h=0.005,0.01,0.015,...,0.05, on [0,10];

(c) Error in H by the sixth order symplectic scheme.
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The CPU times for each method are shown in Table 5. We use h = 0.001 for

the symplectic schemes 1, 2 and h = 0.01 for a sixth order symplectic method [53].

Similar to the linear case, the spectral collocation is more effective in the long run.

It takes less CPU times than all three symplectic methods.

Table 6 compares the CPU times used on the same interval [0,10000] for the

spectral methods when N = 15. We can see that the errors are about the same

but collocation method with Legendre-Phi(Scaling) takes much longer time. The

collocation method with Chebyshev-Differentiation matrix takes less time but the

error is one order less than the others.

time(secs) Error in Energy

Collocation, N=50 on [0,10000] 2898 5.2735593669 × 10−15

Collocation, N=30 on [0,5000] 668 7.6605388699 × 10−15

Symplectic 1 on [0,450] 2849 9.9279222845 × 10−4

Symplectic 1 on [0,500] 3585 1.0088809618 × 10−3

Symplectic 1 on [0,1000] > 2 hrs

Symplectic 2 on [0,460] 3010 3.8086767073 × 10−10

Symplectic 2 on [0,1000] > 2 hrs

Symplectic 6th order on [0,4200] 2602 5.4956039718 × 10−15

Symplectic 6th order on [0,5000] 9833 7.6327832942 × 10−15

Symplectic 6th order on [0,10000] >3hrs

Table 5: Comparison of the CPU times between the collocation with Chebyshev

differentiation matrix and symplectic methods.
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Spectral Methods time(secs) Error in Energy

Colloc. with D matrix 59 6.481482017761664 × 10−13

Tau with Legendre-Phi 112 1.260103132949553 × 10−14

Tau with Legendre-Phi(Scaling) 108 1.504352198367087 × 10−14

Colloc. with Legendre-Phi 76 1.570965579844597 × 10−14

Colloc. with Legendre-Phi(Scaling) 251 1.654232306691483 × 10−14

Guo-Wang 177 1.521005543736465 × 10−14

Table 6: Comparisons of the CPU times and the terminal errors among the spectral

methods when N = 15 on [0, 10000].

We end this example with the Tau method with Legendre-Phi together with New-

ton iteration. The error for this method is similar to the error of the Tau method

without Newton iteration. We consider the number of iterations shown on Table 7 in

order to see if the iterative process converges to the solution faster.

We compare the number of iterations and the CPU times for Tau with and without

Newton iteration. The number of iterations is reduced by half.
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Intervals/Method N time elapse Iteration numbers

Coll w D matrix,[0, 10] 10 0.06s 16

Tau w Newton,[0, 10] 10 0.14s 6

Tau w/o Newton,[0, 10] 10 0.07s 14

Coll w Phi,[0, 10] 10 0.097s 18

Coll w Phi-Scaling,[0, 10] 10 0.21s 18

Guo-Wang,[0, 10] 10 0.07s 13

Guo-Wang,[0, 10] 20 0.115s 7

Tau w Newton,[0, 10] 20 0.45s 7

Tau w/o Newton,[0, 10] 20 0.110s 19

Coll w Phi,[0, 10] 20 1.104s 14

Coll w Phi-Scaling,[0, 10] 20 0.115s 7

Coll w D,[0, 10] 20 0.115s 7

Table 7: Comparisons of the iteration numbers and the CPU times by using the

spectral methods.
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Example 3: Consider a linear system of ordinary differential equations

p′(t) = q(t) − 8

3
q3(t)

q′(t) = p(t)

with initial condition p(t0) = 1
2
cos(2t0), q(t0) = 1

4
sin(2t0).

The Hamiltonian for this system is given by H(p, q) = 1
2
p2 − 1

2
q2(t) + 2

3
q4(t). We

choose t0 = 0 so the initial conditions are p(0) = 0.5 , q(0) = 0 and the initial energy

H(p0, q0) = H0 = 0.125.
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Figure 15: Errors of |H0 − HN(T )| with respect to N on [0,10] by using 1) Guo-

Wang(red-o) 2)Tau(black-*) with Phi 3) Tau(black-*) with Phi-Newton 4) collocation

with Phi(x)(pink-o) 5) collocation with Phi(x)-Scaling(green-o) 6) collocation with

differentiation matrix(yellow-o) matrix.
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Figure 16: ‖HHH(tj) −HHH0‖L∞ with respect to N on [0,10] by using 1) Guo-Wang(red-

o) 2) Tau(black-*) with Phi 3) Tau(black-*) with Phi-Newton 4) collocation with

Phi(x)(pink-o) 5) collocation with Phi(x)-Scaling(green-o) 6) collocation with differ-

entiation matrix(yellow-o) matrix.
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Example 4: Threefold symmetry Hamiltonian system [22].

Consider a k−fold rotational symmetry system in phase plane with Hamiltonian

Hk(p, q) =
k∑

j=1

cos(p cos(
2πj

k
) + q sin(

2πj

k
)).

For k = 3, the three axis-symmetric Hamiltonian system is,

H(p, q) = cos(p) + cos(−1

2
p +

√
3

2
q) + cos(

1

2
p +

√
3

2
q).

The corresponding system of nonlinear ODE for this H is

p′(t) = −∂H

∂q
=

√
3

2
sin(−1

2
p +

√
3

2
q) +

√
3

2
sin(

1

2
p +

√
3

2
q)

q′(t) =
∂H

∂p
= − sin(p) +

1

2
sin(−1

2
p +

√
3

2
q) − 1

2
sin(

1

2
p +

√
3

2
q)

with initial condition p(0) = π, q(0) = 0. In this case, H0 = −1.

Figure 17 contains the graphs of p, q with respect to time t. The result from

the symplectic method does not make a right corner like the one from the spectral

collocation method with Chebyshev differentiation matrix. We can see it clearly if

we consider the phase plot of the results. The phase plot from a sympletic method

has fuzzy corners compared with sharp-corner hexagon from the spectral collocation

as shown in Figure 18. The other spectral methods also give similar phase plots as

in (a). Note that the possible solutions for threefold symmetry Hamiltonian system

contain equilateral triangles and hexagons depending on the initial conditions. We

consider only a hexagon case in this example. For the symplectic method, the smaller

the h, the more horizontally stretched the graph is. The graph tends to have the

same behavior as the collocation method when the size of h decreases.
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From the observation on different spectral methods, the same N may give different

results. For example, with N = 20, we have the collocation with D matrix and Tau

with Legendre-Phi converge to a similar solution with number of iteration on the last

interval less than 10 whereas the collocation method with Legendre-Phi and Guo-

Wang converge to different solutions and reach the maximum iteration number(1000).
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Figure 17: Graphs of p (upper) and q (lower) versus t by (a) collocation method with

Chebyshev-D when N = 20 on [0,170]; (b) symplectic 3 h = 0.00005 on [0,80] (c) Tau

with Legendre-Phi when N = 20 on [0,200].

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

p

q

collocation−3fold: N=20,h=1,p
0
=π,q

0
=0 on [0,10000]

−4 −3 −2 −1 0 1 2 3 4

−3

−2

−1

0

1

2

3

p

q

symplectic scheme−3fold: h=0.001,p
0
=π,q

0
=0 on [0,1000]

Figure 18: Phase plots q versus p by (a) spectral collocation with D matrix when

N = 20 on [0, 10000]; (b) symplectic 3 when h=0.001 on [0,1000].

Figure 19, 20 and 21 show the error propagations of the spectral methods. The

error from the collocation method with Chebyshev-Differentiation matrix increases
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linearly as t increases. The other methods have a similar pattern but Tau method

with Legendre-Phi gives the best error.
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Figure 19: Patterns of errors |H(ti) − H0| versus t on [0,1000] by (a) collocation

method with Chebyshev-Differentiation matrix when N = 15 (b) collocation method

with Legendre-Phi.
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Figure 20: Patterns of errors |H(ti) − H0| versus t on [0,1000] when N = 15 by (a)

Tau method with Legendre-Phi (b) Guo-Wang.
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Figure 21: Patterns of errors |H(ti)−H0| versus t on [0,1000] by (a) Tau method with

Newton iteration when N = 15 (b) collocation method with Legendre-Phi(Scaling)

when N = 16.

Figures 22 represents the errors from the spectral methods. We compare the errors

by using the maximum norm in (b). The highest error is from Guo-wang and the next

is the collocation with the differentiation matrix. The errors from the other methods

drop down to the machine error right away.

The convergence rates for the symplectic and the collocation methods with the

differentiation matrix are shown in Figure 23. For the spectral collocation method,

the error drops down to machine error with relatively small N .

Table 8 shows convergent rates for the energy H and the CPU times. We use h =

0.001 for the symplectic schemes 3. The spectral collocation method with Chebyshev-

Differentiation matrix used 45 minutes to obtain data in [0, 10000] but with the same

time used, the symplectic method produces data approximately on [0,450] with much

lower accuracy.
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[0,10] by using 1)Guo-Wang(red-o) 2)Tau(black-*) with Phi 3)Tau(black-*) with Phi-

Newton 4)collocation with Phi(x)(pink-o) 5)collocation with Phi(x)-Scaling(green-o)

6) collocation with differentiation matrix(yellow-o) matrix.
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time(secs) Error in Energy

Symplectic 3 on [0,400] 2190 6.425967063916294 × 10−3

Symplectic 3 on [0,600] 5360(89mins) 1.0537382086 × 10−2

Colloc. w Chebyshev-D, N=20 on [0,10000] 2725(45mins) 2.7539082125 × 10−12

Colloc. w Legendre-D, N=15 on [0,1000] 5 7.022160630754115 × 10−13

Tau w Legendre-Phi w/o Newton, N=15 on [0,1000] 6.59s 4.218847493575595 × 10−14

Tau w Legendre-Phi w Newton, N=15 on [0,1000] 118s 1.565414464721471 × 10−14

Coll w Legendre-Phi, N=15 on [0,1000] 93s 1.132427485117660 × 10−14

Coll w Legendre-Phi(Scaling), N=15 on [0,1000] 21s 1.443289932012704 × 10−15

Guo-Wang, N=15 on [0,1000] 69s 3.811395643538162 × 10−13

Table 8: Comparison of the CPU times between the spectral and symplectic methods.

This problem is a highly nonlinear problem with cosine and sine terms. The

number of iterations is highly depending on N and the terminal value for t. Table 9

shows the comparisons of iteration numbers and the CPU times by using the spectral

methods as we can see that Guo-wang’s iteration number is larger than the other

methods. It means the method doesn’t converge as fast. It reaches the maximum

number of iterations before reaching the tolerance. If the Newton method is applied,

it reduces the number of iterations and the CPU times as shown in Table 9.
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Intervals/Method N time elapse Iteration numbers on the last interval

Tau w Newton,[0, 10] 10 0.136s 10

Tau w/o Newton,[0, 10] 10 0.09s 18

Coll w Phi,[0, 10] 10 0.103s 18

Coll w Phi-Scaling,[0, 10] 10 0.238s 18

Coll w D,[0, 10] 10 0.070s 15

Guo-Wang,[0, 10] 10 1.284s 1000

Table 9: Comparisons of iteration numbers and the CPU times by using the spectral

methods.
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Example 5: Consider a linear system of ordinary differential equations [31]

p′(t) = q(t)

q′(t) = p(t) − p3(t)

with the initial conditions p(t0) =
√

2, q(t0) = 0.

The Hamiltonian for this system is given by H(p, q) = −1
2
q2 + 1

2
p2(t)− 1

4
p4(t).The

initial energy is H(p0, q0) = H0 = 0.

Figure 24 shows the error propagations |H(ti)−H0| versus t on [0,1000] when N =

15 by collocation method with Legendre-Differentiation matrix, collocation method

with Legendre-Phi and Tau method with Legendre-Phi. The error propagations of

the other spectral methods are similar to Figure 24 (b) and (c). In this case, for

the spectral methods except the collocation method with Chebyshev-Differentiation

matrix, the errors depend on the terminal point we chose. They fluctuate throughout

the domain. Therefore the maximum norm is more reliable. Figure 25 shows the

two different errors, the terminal errors and the maximum errors of the spectral

methods. In part (b), all of the spectral methods are having the same convergence

rate until N = 17 then the collocation method with Legendre-Phi and Tau method

with Legendre-Phi and Guo-Wang errors stop decreasing even when N is smaller.

The errors from the other methods still decrease until N = 19 and they maintain a

stable tail.

The comparison of the CPU times between the spectral and symplectic methods is

shown in Table 10 and the comparisons of the iteration numbers and the CPU times
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by using the spectral methods are shown in Table 11.
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Figure 24: Patterns of errors |H(ti) − H0| versus t on [0,1000] when N = 15 by (a)

collocation method with Chebyshev-Differentiation matrix (b) collocation method

with Legendre-Phi (c) Tau method with Legendre-Phi
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time(secs) Error in Energy

Colloc. w Chebyshev-D, N=15 on [0,1000] 2.9 4.293304600722081 × 10−11

Tau w Legendre-Phi w/o Newton, N=15 on [0,1000] 5s 2.234212814755665 × 10−12

Tau w Legendre-Phi w Newton, N=15 on [0,1000] 6.6s 2.261746345766369 × 10−12

Coll w Legendre-Phi, N=15 on [0,1000] 4.9s 2.731814774392660 × 10−12

Coll w Legendre-Phi(Scaling), N=15 on [0,1000] 20s 2.742139848521674 × 10−12

Guo-Wang, N=15 on [0,1000] 4.5s 2.732480908207435 × 10−12

Table 10: Comparison of the CPU times between the spectral and the symplectic

methods.

Intervals/Method N time elapse Iteration numbers

Guo-Wang,[0, 10] 10 0.065s 9

Tau w Newton,[0, 10] 10 0.14s 3

Tau w/o Newton,[0, 10] 10 0.0707s 9

Coll w Phi,[0, 10] 10 0.089s 9

Coll w Phi-Scaling,[0, 10] 10 0.226s 9

Coll w D,[0, 10] 10 0.064s 9

Table 11: Comparisons of the iteration numbers and the CPU times by using the

spectral methods.
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Example 6: The Henon-Heiles(HH) system [23, 24].

The Henon-Heiles(HH) Hamiltonian was introduced in the study of galactic dy-

namics to describe the motion of stars around the galactic center.

H(p1, p2, q1, q2) =
1

2
(p2

1 + p2
2 + q2

1 + q2
2) + q2

1q2 −
1

3
q3
2.

The terms q2
1 and q2

2 form a potential well which is responsible for the oscillations

of the particle (the first four terms are related to the Kinetic energy). The last two

terms, q2
1q2 and 1

3
q3
2, are responsible for the existence of the exits from the orbit.

There are four equilibrium points for this system which are E1 = (p̄1, p̄2, q̄1, q̄1) =

0, a center, E2 = (0, 0, 0, 1), E3 = (0, 0,

√
3

2
,− 1√

2
) and E4 = (0, 0,−

√
3

2
,− 1√

2
),

saddle points. As a result, there are three exits for the energy to escape according

to the three saddle points. The total energy HE = 0 for E1 and HE =
1

6
for E2, E3,

and E4. If the initial energy is far beyond this HE, the particles wander inside the

scattering region for a certain time until they cross one of the three energy line and

escape to infinity. In other words, when the initial H < 1
6
, the solution is regular;

when H > 1
6
, the solution is chaotic. Note that the time they spent in bounded region

is called the ”escape time”. The higher the energy, the shorter the escape times are

found.

Figure 26 shows the phase plots for potential energy H when p1 = 2, p2 = 1 are

fixed, q2 and q1 vary. We can see that the three exits for the energy are at the three

saddle points E2, E3, andE4 located at three vertices of an equilateral triangle.
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Figure 26: Graphs of contour plots of energy H when q2 and q1 vary and p1 = 2, p2 = 1

are fixed (a) 3-D (b) 2-D

The system of nonlinear ODE for this H is

p′1(t) = −∂H

∂q1

= −q1 − 2q1q2

p′2(t) = −∂H

∂q2

= −q2 − q2
1 + q2

2

q′1(t) =
∂H

∂p1

= p1

q′2(t) =
∂H

∂p2

= p2

We select two different sets of the initial conditions. The first set represents a

regular case with

p1(0) = 0.011, p2(0) = 0, q1(0) = 0.013, q2(0) = −0.4; H0 = 0.101410733 < 1/6.

The second set is a chaotic case with

p1(0) =
√

2 × 0.15925, p2(0) = q1(0) = q2(0) = 0.12; H0 = 0.18200200 > 1/6.

Figure 27 shows the chaotic solution and the phase plot when the particle wanders

in the bounded region until it crosses the energy threshold line and escapes. Figure
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28 represents phase plots of a regular solution from both methods. The trajectory

from the symplectic method is denser than the one from the collocation method with

the Chebyshev differentiation matrix. The plot of q2 and p2 from Tau method with

Legendre-Phi is shown in part (c). The loop is very thin.
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Figure 27: Chaotic solutions by the spectral collocation N = 15 (a) on [0, 24]; (b)

phase plot q2 versus q1 on [0,232].
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Figure 28: Phase plots of a regular case on [0,2000] by (a) the spectral collocation

with Chebyshev D-matrix, N = 20; (b) symplectic 4 h=0.01. (b) Tau method with

Legendre-Phi N = 20.

The errors in energy, H, and the CPU times are presented in Table 12. We choose

the initial conditions from the regular case. We use h = 0.001 for the symplectic

scheme 4. By comparing both times and errors, Tau method has the best error even
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though it uses more CPU times than the collocation method with the differentiation

matrix.

time(secs) Error in Energy

Collocation, N=20 on [0,10000] 2691 1.9004658957 × 10−12

Symplectic 4 on [0,65] 21 6.0026862363 × 10−5

Symplectic 4 on [0,200] 970(16mins) 6.0026862363 × 10−5

Symplectic 4 on [0,1000] >2hrs

Colloc. w Cheb-D, N=20 on [0,1000] 4s 7.037426197342711 × 10−13

Tau w Legendre-Phi, N=20 on [0,1000] 8s 6.800116025829084 × 10−16

Tau w Legendre-Phi(Scaling), N=20 on [0,1000] 8.5s 1.415534356397075 × 10−15

Coll w Legendre-Phi(Scaling), N=20 on [0,1000] 22s 6.106226635438361 × 10−16

Guo-Wang, N=20 on [0,1000] 6s 3.122779812514409 × 10−13

Table 12: Comparison of the CPU times of the spectral and the symplectic methods.

The rates of convergence in energy using the regular initial values are shown in

Figure 29. Spectral collocation gives the rate in the order of ( 1
N

)(0.85N) and the

symplectic scheme 4 is of the order one. The convergence rates of the other spectral

methods versus N where N = 3, ..., 20 are demonstrated in Figure 30. Again, the

errors from the collocation method with the differentiation matrix and Guo-Wang

reach 10−14 then stay at that rate as N increases. Figure 30(b) shows that the rate

of Tau method is about (0.03 1
2.1N

)(0.85N) when N = 3, ..., 14.
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Figure 29: (a) Error in H and ( 1
N

)(0.85N) versus N when N = 3, 4, ..., 12 by spectral

collocation on [0, 10]; (b) Error in H versus h when h = 0.005, 0.01, ...., 0.05 by

symplectic 4 on [0, 10].
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)(0.85N) versus N (blue -.).
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Example 7: A modified Two-body Problem [52].

The Hamiltonian for this system is H = T + V where T = 1
2
‖ppp‖2 and V =

− 1

‖qqq‖
− ε

2‖qqq‖3
. Thus

H(ppp,qqq) =
1

2
‖ppp‖2 − 1

‖qqq‖
− ε

2‖qqq‖3
.

where ε is a small perturbation parameter.

The system of nonlinear ODEs for this energy is

p′1(t) = − q1√
(q2

1 + q2
2)

3
− 3εq1

2
√

(q2
1 + q2

2)
5

p′2(t) = − q2√
(q2

1 + q2
2)

3
− 3εq2

2
√

(q2
1 + q2

2)
5

q′1(t) = p1

q′2(t) = p2

with the initial conditions p1(0) = p10, p2(0) = p20, q1(0) = q10, q2(0) = q20.

This is a modification of the two-body problem. It is about the system of two

massive bodies that attract each other by the gravitational force. We are seeking for

the positions and velocities of those two bodies. The first body is located at the origin.

The second body is located where its coordinates are (q1, q2) and the corresponding

velocity is (q′1, q
′
2) = (p1, p2). This model describes the motion of a particle in a plane.

A particle in this model is attracted gravitationally by a slightly oblate sphere instead

of a point mass. The attracting body rotates symmetrically with respect to an axis

perpendicular to the plane of the particle. If there is no perturbation (ε), the problem

is just a regular two-body problem[24].
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Besides the energy H, this system also preserves the angular momentum which

is pT Bq , where B = J for this problem, i.e
d(pT Jq)

dt
= 0 ⇒ pT Jq = pT

0 Jq0. We

use the initial values p1(0) = 0, p2(0) =

√
1 + e

1 − e
, q1(0) = 1 − e, q2(0) = 0, where

e is the eccentricity of the orbit. Here if we choose e closer to one, the solution

tends to diverge and does not conserve energy well for both spectral collocation and

symplectic methods. We choose e small enough in order for the solution to converge

to an equilibrium point.

We compare the spectral methods and a second order symplectic method. The

eccentricity e is chosen to be 0.001 (almost a circle) for the numerical test. Both

methods preserve the structure. Figures 31 represents the phase plots by the spectral

collocation with the differentiation matrix and with a perturbation value ε = 0.005.

For all reasonable N and h, the solutions from all methods are almost the same, but

with a slightly thicker orbit at the left and the right corners for the symplectic method

scheme 1 (not shown). Note that with a larger perturbation ε, the body rotates in

an oblique pattern. If we compare the times and errors, the spectral methods give a

better result.

The convergence rates for both methods are shown in Figure 32. The convergence

rate for the symplectic scheme is of order three and for the spectral collocation is of the

order ( 1
N

)(1.1N). Figure 33 represents the convergence rates of the spectral methods

when N = 3, ...16. The pattern is similar to the errors in the previous example. In

part (b), we consider the rates when N = 3, ...12. Excluding the spectral collocation

method, the other spectral methods have the errors of the order (4 1
10

)(1.28N) which
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Figure 31: Phase plots of q1 and q2 when ε = 0.005 by the collocation method with

D matrix on [500,1000] when N = 20.

is the same as the convergence rate of the angular momentum by using the spectral

methods shown in Figure 34.
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Figure 32: (a) Errors in H and in the angular momentum with ( 1
N

)(1.1N) versus

N = 3, 4, ..., 12 by the spectral collocation with D on [0, 100]; (b) Errors in H and in

the angular momentum versus h=0.005,0.01,0.015,...,0.05, on [0,100] by symplectic 1.

Table 13 represents the errors in energy H, the errors in the angular momentum,

and the CPU times. For these initial conditions, both errors and the CPU times
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Figure 33: (a) Errors in H versus N = 3, 4, ..., 16 by using 1) Guo-Wang(red-o) 2) Tau

with Legendre-Phi(black-*) 3) Tau with Legendre-Phi-scaling(blue-*) 4) collocation

with Legendre-Phi(scaling)(green-o) 5) collocation with differentiation matrix(yellow-

o) (b) Errors in part (a) and 4( 1
10

)(1.28N) versus N = 3, 4, ..., 12 (solid black).
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Figure 34: (a) Errors of the angular momentum versus N = 3, 4, ..., 16 by using

1) Guo-Wang(red-o) 2) Tau with Legendre-Phi(black-*) 3) Tau with Legendre-Phi-

scaling(blue-*) 4) collocation with Legendre-Phi(scaling)(green-o) 5) collocation with

differentiation matrix(yellow-o) (b) Errors in part (a) and 4( 1
10

)(1.28N) versus N =

3, 4, ..., 12 (solid black).
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from the spectral collocation are better than any symplectic method. However, if

we change the initial conditions to p10 = 0.1, p20 = 0.9, q10 = q20 = 1, the errors

from both methods are almost in the same order but the spectral collocation is time

efficient as we can see from Table 14 with the two-body case (ε = 0).

time(secs) Error in Energy Error in Angular Momentum

Colloc,N=20,[0, 104] 3230 2.15614193 × 10−11 2.09121608 × 10−11

Symp 1,h=0.001,[0,75] 53 6.05561933 × 10−8 5.85881273 × 10−8

Symp 1,h=0.001,[0,80] 72 6.48879968 × 10−8 6.18349377 × 10−8

Colloc,N=20,[0,1000] 4.6 7.54918350 × 10−12 7.43594075 × 10−12

Tau w Legendre-Phi 9.5s 5.32907051 × 10−15 5.21804821 × 10−15

Tau w Legendre-Phi(Scaling) 9.5s 5.32907051 × 10−15 5.21804821 × 10−15

Coll w Legendre-Phi(Scaling) 24s 1.09912079 × 10−14 1.08801856 × 10−14

Guo-Wang, N=20 on [0,1000] 32s 3.19833048 × 10−12 3.15036885 × 10−12

Table 13: Comparison of the CPU times of the spectral and the symplectic methods.

time(secs) Error in Energy Error in Ang. Momentum

Colloc, N=20 on [0,100] 3 4.28660520 × 10−7 1.3618605 × 10−7

Symp 1,h=0.001,[0,40] 75 3.02104066 × 10−7 1.06633042 × 10−6

Symp 1,h=0.001,[0,50] 166 3.02104066 × 10−7 1.06633042 × 10−7

Table 14: Comparisons of the CPU times between the two methods with the same

order of errors when ε = 0.
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Example 8: The Three-body system [40].

Consider the Hamiltonian of the Earth-Moon-Satellite system given by

H(px, py, x, y) =
p2

x + p2
y

2
+ (ypx − xpy) − (

(1 − µ)

r1

+
µ

r2

),

where r2
1 = (x + µ)2 + y2, r2

2 = (x + µ − 1)2 + y2.

This model describes the motion of the satellite around the Earth and Moon. The

Earth and Moon are located on the x-axis where their center of mass is placed at

the origin. The coordinate of the satellite is (x, y). It rotates in the orbit around the

Earth and Moon at the rate one moon month so the Earth and Moon are always on

the x-axis. The mass of the Moon is µ = 0.01215 (the length unit is 384400 km).

The corresponding system is given by

p′x(t) = py −
(1 − µ)

r3
1

(x + µ) − µ

r3
2

(x + µ − 1)

p′y(t) = −px −
(1 − µ)

r3
1

y − µ

r3
2

y

x′(t) = px + y

y′(t) = py − x

We compare the spectral collocation with a second order symplectic method under

a transformation q1 = 1
2
(x + y) , q2 = 1

2
(x − y) , p1 = px + py , p2 = px − py. The

initial conditions for Figure 35 are p1(0) = 1.259185, p2(0) = −1.259185, q1(0) =

−0.25, q2(0) = −0.25 where we can see an orbit (the coordinate plot for this case is

a circle (not shown)) and p1(0) = −0.16, p2(0) = −0.7, q1(0) = 1.3, q2(0) = −0.31

for Figure 36 to observe the orbit of the satellite. Solutions are plotted by using the
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same frame sizes. In Figure 36, the orbit from a symplectic method is thicker than

the collocation method especially at the left and right sides.
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Figure 35: Phase plots p1 versus q1 of the orbit by (a) spectral collocation on

[850, 1000]; (b) symplectic 1 h=0.005 on [850,1000].
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Figure 36: Phase plots of the coordinate of the satellite, q2 versus q1 by (a) spectral

collocation on [600, 1000]; (b) symplectic 1 h=0.005 on [600,1000].

Table 15 compares the errors in energy H and the CPU times by using the first

set of the initial conditions. We use h = 0.005 for the symplectic method. At t = 300,

the spectral collocation method uses much less time (5.4 second vs. 18 second) and

yet, offers much better accuracy in energy (2 × 10−7) than the symplectic method

(9 × 10−3).

The convergence rates of each method are plotted in Figure 37. We use the first set

of the initial conditions on [0, 10] when N = 11, ..., 21. The rate of Tau method with
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time(secs) Error in Energy

Symplectic 1 on [0,300] 18 9.3757448742 × 10−3

Symplectic 1 on [0,150] 4.6 4.8046166186 × 10−3

Collocation, N=20 on [0,300] 5.4 1.6617218332 × 10−6

Tau w Legendre-Phi, N=20 on [0,300] 120s 1.9503096782 × 10−7

Guo-Wang, N=20 on [0,1000] 121s 2.9193665396 × 10−7

Table 15: Comparison of the CPU times between the spectral and the symplectic

methods.

Legendre-Phi is the best which is of the order 0.3( e
N

)(0.675N) and for the symplectic

scheme 1 is of order three. The collocation method with Legendre-Phi ( with and

without scaling) doesn’t converge to the solution in this case.
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Figure 37: (a) Errors in H versus N = 11, 12, ..., 21 on [0, 100] by (a) spectral collo-

cation with Chebyshev D (yellow), Tau with Legendre-Phi(black), Guo-Wang (red)

and the rate (0.3 e
N

)(0.675N) (green)(b) Error in H versus h= 0.0025,0.005,....,0.015 by

symplectic 1 on [0,100].
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5 Discussion and Conclusion Remarks

We have compared numerical results of the spectral methods discussed in Chapter

2 and several symplectic methods in solving Hamiltonian dynamical systems. Our

numerical evidences have demonstrated that the spectral methods have several ad-

vantages.

1) They require less CPU times in order to reach the same level of accuracy.

2) They preserve energy and symplectic structure better.

3) They predict more accurate trajectories for long time.

In addition, the proposed spectral methods are systematic and can be applied to

any Hamiltonian system without changing the basic algorithm. On the other hand,

one needs to design a different symplectic method for each different problem.

In comparison among the spectral methods, we shall discuss by cases. For a linear

Hamiltonian system, the collocation method with Chebyshev differentiation matrix

has the highest error. Tau method with Legendre-Phi and Guo-Wang have the best

convergence rates. However, the rate from Guo-Wang oscillates at the tail when

N ≥ 9 while the Tau method has a stable tail.

For a nonlinear Hamiltonian system, based on the numerical results, if we compare

the error

max
1≤j≤N

‖H(tj) − H0‖L∞ ,

the convergence rates for the spectral methods are almost the same except for the

collocation with differentiation matrix. However, the error from Guo-Wang method
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reaches only around 10−14 but Tau and the collocation methods with Legendre-Phi

could reach 10−15 or less and the tails are more stable.

If we consider the CPU times of each method in all the examples, we can see that

Tau method with Legendre-Phi and the collocation method with Legendre-Phi used

shortest times.

If we compare in the sense of iterative methods used in nonlinear problems, the

method with Newton iteration reduces the number of iterations in each interval by

half. The method converges to the solution faster for a highly nonlinear problem.

However, it takes up more CPU times than the regular spectral methods due to

matrix multiplications.

The condition numbers of matrices for each method on [0,1] are shown in the

following table.

size Guo-Wang(A) Tau with L-Phi(L.H.S.) Phi derivative of Phi(Legendre)

5 × 5 28.3386 9 42.5607 3.4141

10 × 10 116.9317 19 143.4796 5.2792

11 × 11 142.5557 21 170.3999 5.5894

12 × 12 170.8949 23 199.7876 5.8853

20 × 20 498.1924 39 517.6680 7.9122

50 × 50 3420 99 3036.2 13.1456

The condition numbers of the left-hand-side matrix A [31] obtained from recursive
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relation of Guo-Wang method are large(∼ O(n2)) while the Legendre has the smallest

condition number due to the orthogonality property. This may give the advantage

to Tau and the collocation methods with Legendre-Phi compared with the left hand

side matrix A from Guo-Wang.

The theoretical investigations for the stability, convergence on any time interval

and symplectic preserving properties of the spectral methods are underway.

5.1 Extension to the Integral Equations of the Second Kind

General form of Integral equation of the second kind is [9, 2]

λx(t) −
∫

D

K(t, s)x(s)ds = y(t), t ∈ D,λ 6= 0

where D is closed and bounded set in <m for some m ≥ 1 where

K(t, s) is a Kernel function which is assumed to be absolutely integrable.

• If y 6= 0 and the λ are given, then the equation is called ”nonhomogeneous

problem”

• If y = 0, then it is an ”eigenvalue problem”. In this case, we seek for the

eigenvalue λ, and corresponding eigenfunction x.

5.2 Spectral Collocation Method for the Integral Equations

For collocation method, we seek for a solution of the form

xn(t) =
n∑

j=0

cjφj(t).
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where xn ∈ Xn,a finite space Xn ⊂ X = C(D), where Xn = {φ0, φ1, ..., φn}. Then

solve for cj. The solution is unique if [det(φj(ti))] 6= 0.

Approximate form:

λxn(t) −
∫

D

K(t, s)xn(s)ds = y(t)

Define the residual

rn(t) = λxn(t) −
∫

D

K(t, s)xn(s)ds − y(t).

Then

rn(t) = λ
n∑

j=0

cjφj(t) −
∫

D

K(t, s)
n∑

j=0

cjφj(s)ds − y(t).

rn(t) =
n∑

j=0

cj{λφj(t) −
∫

D

K(t, s)φj(s)ds} − y(t).

We apply the spectral collocation method for the Integral equations. For the

collocation method, we require rn(ti) = 0 for each t0, t1, ..., tN ∈ D, i.e

N∑
j=0

cj{λφj(ti) −
∫

D

K(ti, s)φj(s)ds} − y(ti) = 0 (5.1.1)

for each i = 0, ..., n.

This equation is equivalent to the system of equation Accc = B then we solve for ccc.

Define a projection Pn:X → Xn such that

Pnx(t) =
n∑

j=0

αjφj(t)

with the coefficient {αj}n
j=0 determined by solving

x(ti) =
n∑

j=0

αjφj(ti), i = 0, ..., n.

Then (5.1.1) becomes Pnrn = 0.

Note that Pnz = 0 iff z(ti) = 0, i = 0, ..., n.
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5.2.1 Example of a Smooth Kernel

Consider some examples on a smooth domain[3, 39] .

Example 1: λx(t) −
∫ 1

0

estx(s)ds = y(t), t ∈ [0, 1]

where y(t) = λet − 1
t+1

(et+1 − 1) and K(t, s) = est.

The exact solution for this example is x(t) = et.

In this problem, we seek the solution xn which is a linear combination of Legendre

polynomials

x(t) =
n∑

j=0

cjLj(t).

Then r(ti) = 0 implies

λxn(ti) −
∫ 1

0

estix(s)ds − [λeti − 1

ti + 1
(eti+1 − 1)] = 0

λxn(ti) −
∫ 1

0

estix(s)ds = [λeti − 1

ti + 1
(eti+1 − 1)]

λ
n∑

j=0

cjLj(ti) −
∫ 1

0

esti

n∑
j=0

cjLj(s)ds = [λeti − 1

ti + 1
(eti+1 − 1)]

n∑
j=0

cj[λLj(ti)] −
n∑

j=0

cj[

∫ 1

0

estiLj(s)ds] = [λeti − 1

ti + 1
(eti+1 − 1)]

n∑
j=0

cj{[λLj(ti)] − [

∫ 1

0

estiLj(s)ds]} = [λeti − 1

ti + 1
(eti+1 − 1)]

for each i = 0, ..., n and 0 < t0 < t1 < ... < tn < 1(Use n + 1 Gaussian points). The

equation becomes the system

(λL − A)c = B

where
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Figure 38: (a) Graph of the numerical solution xn(dash line) compared with the exact

solution et (b) Graph of p and max(|(x − xn)(ti)|) when λ = 1(blue with o-) and p and

2√
2(n+1)

( e
2(n+2))

2.7n.

L =



L0(t0) L1(t0) . . . Ln(t0)

L0(t1) L1(t1) . . . Ln(t1)

...
...

. . .
...

L0(tn) L1(tn) . . . Ln(tn)


, A =



A00 A01 . . . A0n

A10 A11 . . . A1n

...
...

. . .
...

An0 An1 . . . Ann


.

where Aij ≈
∫ 1

0

estiLj(s)ds.

∫ 1

0

estiLj(s)ds ≈
n∑

k=0

wke
tktiLj(tk) = Aij

Aij = (w0, w1, ..., wk) ∗
(

et0tiLj(t0) · · · etntiLj(tn)

)T

Based on the theory, the error from the Nyström-Trapezoidal method [2] is of

order O(h2). The spectral collocation method gives the error approximately of order

O(
2√

2(n + 1)
(

e

2(n + 2)
)2.7n).
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5.2.2 Examples of C1-Kernels

Example 2:[3], Page 171,

λx(t) −
∫ 1

0

K(t, s)x(s)ds = 0 , t ∈ [0, 1]

where K(t, s) = {
1
2
t(2 − s), 0 ≤ t ≤ s ≤ 1

1
2
s(2 − t), 0 ≤ s ≤ t ≤ 1

.

This kernel is symmetric with K(t, s) = K(s, t). Notice that it is a green function

of the ODE:

λx′′(t) + 0.5x(t) = 0.∫ 1

0

K(t, s)x(s)ds = λx(t)

d

dt

∫ 1

0

K(t, s)x(s)ds = λx′(t)

d

dt
[

∫ t

0

s(1 − 0.5t)x(s)ds +

∫ 1

t

s(1 − 0.5t)x(s)ds] = λx′(t)

−0.5x(t) = λx′′(t), t ∈ [0, 1]

λx′′(t) + 0.5x(t) = 0, t ∈ [0, 1].

We know that the solution of this equation is analytic on the domain [0, 1]. We can

apply the collocation method to this problem i.e. the solution x(t) can be expanded

by using a family of orthogonal functions. Repeat the procedure as in Example 1 but

with 2(n+1) nodes along integration line t = t∗, t∗ is to be chosen on the line s = t.

If we use only n+1 node across the line of discontinuity,s = t, we would get the error

|λ − λh| ∼ O( 1
n2 ) as shown in Figure 39.
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The exact eigenvalues for this equation are the roots of the equation

1

λ
+ tan(

1

λ
) = 0.

We can obtain this by Mathematica program ( FindRoot command, approximate

solutions which is exact up to 16 digits). The first largest three eigenvalues are

0.24296268509503405, 0.04142614984032116, and 0.01570867161341755.

The exact eigenfunctions are sin( t
λ
).
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Figure 39: Graph of n and |λ − λh| for the first eigenvalue(blue with o-) and n and 1
n2 .

By using n+1 points for s < t∗ and n+1 pints for s > t∗, we got error |λ−λh| ∼

O(
1√
n

(
eM

2n + 0.5
)2.5n+3)
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Figure 40: (a) Graph of p and |λ−λh| for the first eigenvalue (b) Graph of 1√
n
( eM
2n+0.5)2.5n+3

over |λ − λh| for the first eigenvalue.
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5.2.3 Singular Equations

x(t) − λ

∫
D

K(t, s)x(s)ds = f(t), t ∈ D

Singularities due to lack of analyticity in an integral equation.[2, 9]

There are 3 different types of singular integral equations.

1. Equations with semi-infinite or infinite ranges.

2. Equations with discontinuous derivative in either the kernel or the free term

K(t, s) or f(t) ∈ C but does not belong to C1.

3. Equations with either infinite or nonexisting derivative of some finite order.

Singular equations arise in areas of potential problems, Dirichlet problems, radia-

tive equilibrium for example. We will consider singularities in Linear equations as

follows:

I. The case of jump singularities

• The functions K(t, s) and f(t) are piecewise continuous with jump discontinu-

ities only along the lines parallel to the coordinate axes as shown in Figure 41.

• In this case, the integral equations can be reformulated in a similar way as the

original equation.

II. The case that f(t) is badly behaved

In this case bad behavior will propagate from f(t) to the solution x(t). We remove

the singularities by setting
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Figure 41: Sketches of the jump discontinuities along the lines parallel to the coordinate

axes.

(a) x(t) = ψ(t) + f(t)

Then the integral equation becomes

ψ(t) + f(t) − λ

∫
D

K(t, s)(ψ(s) + f(s))ds = f(t)

ψ(t) = λ

∫
D

K(t, s)ψ(s)ds + λ

∫
D

K(t, s)f(s)ds

and solve for ψ(t)

(b) x(t) = ψ(t) + γ(t)

such that f(t) − γ(t) is well-behaved and γ(t) has the bad characteristics of f(t)

that are propagated to x(t). Then the integral equation becomes

ψ(t) + γ(t) − λ

∫
D

K(t, s)(ψ(s) + γ(s))ds = f(t)

ψ(t) = [f(t) − γ(t)] + λ

∫
D

K(t, s)ψ(s)ds + λ

∫
D

K(t, s)γ(s)ds

and solve for ψ(t)(use quadrature rule).

Note that in both setting, we need

∫
D

K(t, s)ψ(s)ds and

∫
D

K(t, s)γ(s)ds to be

smooth.
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III. The case that f(t) has discontinuous derivatives

In this case, a high-order accuracy from a quadrature rule may not generally be

obtained since a bad behavior of f(t) may affect x(t).

IV. K(t, s) is discontinuous along a line parallel to the s-axis pass onto

the solution x(t),

K(t, s) =
g(t, s)

|t − t1|α
, 0 < α < 1, t1 ∈ D.

and g is a continuous function.

• We cannot use quadrature method or collocation (h-version) but might be able

to use Galerkin method.

• We use product-integration or modification method since kernel is unbounded

at t = t1,

K(t, s) =
g(t, s)

|s − s1|α
, 0 ≤ α < 1.

• Use product-integration or expansion method with orthogonal polynomial.

IV. k(t, s) is weakly singular with the form

K(t, s) =
g(t, s)

|t − s|α
, 0 < α < 1,

and g is continuous on D having singularity along t = s.

• It is sometimes possible to reformulate the equation so that K(t, s) becomes at

least continuous. • If K(t, s) is of the form with 0 < α < 1
2
, f ∈ C[a, b] then the

second iterated kernel K2(t, s) is bounded and continuous.
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Example 3:[39],Page 47, [3], Page 214.

λx(t) −
∫ 1

0

K(t, s)x(s)ds = 0 , t ∈ [0, 1]

where K(t, s) =

{
t, 0 ≤ t ≤ s ≤ 1

s, 0 ≤ s ≤ t ≤ 1

.

i.e., K(t, s) = K(s, t).

Notice that this Kernel is a green function of the ODE: λx′′(t) + x(t) = 0.

∫ 1

0

K(t, s)x(s)ds = λx(t)

d

dt
[

∫ t

0

sx(s)ds +

∫ 1

t

tx(s)ds] = λx′(t)

−x(t) = λx′′(t), t ∈ [0, 1]

λx′′(t) + x(t) = 0, t ∈ [0, 1]

This equation has an analytic solution. We use the spectral method to approximate

the numerical solution for this integral equation. The exact solution for the first

eigenvalue is 4
π2 with the corresponding eigenfunction ϕ(x) = α sin(1

2
πx).
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Figure 42: Graph of n versus g = ( 1
n)( eM

2n+1)2.5n+1.8 over max(λ− λh) where M = 1
2(a) 1

ng

/ max(λ − λh) ,(b) g / max(λ − λh) (c) n · g / max(λ − λh)
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From the Figure 42, we can conclude that the maximum error for the first eigen-

value is in the order ∼ O(( 1
n
)( eM

2n+1
)2.5n+1.8).

Example 4:

x(t) +

∫ 1

0

√
tsx(s)ds =

√
t, 0 ≤ t ≤ 1.

The exact solution is x(t) = 2
√

t
3

.

• Without knowing the exact solution, if we look at a kernel function for this

problem K(t, s) =
√

ts , the first derivative of this kernel is unbounded at t = 0.

Kernel has a discontinuous and unbounded first derivative on the domain.

• A solution for this problem is x(t) = 2
√

t
3

which has a singularity at t = 0. This

solution has an unbounded first derivative and so on. As a result, this solution is not

analytic so the collocation would not give a good result.

• If we transform it into the ODE, we get the ODE as follows:

x(t) +

∫ 1

0

√
tsx(s)ds =

√
t

x′(t) +
d

dt
[

∫ 1

0

√
tsx(s)ds] =

1

2
√

t

−1

4
[

∫ 1

0

√
s

t
3
2

x(s)ds] = − 1

4t
3
2

− x′′(t)

− 1

4t2
[
√

t − x(t)] = − 1

4t
3
2

− x′′(t)

x′′(t) +
x(t)

4t2
= 0

From here we can see clearly that there is a singularity at t=0 and a solution for this

ODE is x(t) = 2
√

t
3

.
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It turns out that the error is of order O( 1
n4 ).

We first try to obtain a numerical solution by using a regular spectral collocation.

The result is shown in Figure 43 with the convergence rate of order O( 1
n5/2 ). Since

the solution has a problem around t = 0 and the derivative is unbounded at t = 0,

we increase the number of nodes near t = 0. We use n + 1 Gaussian nodes for the

numerical integration and use n + 1 Gaussian nodes for the rest of the domain. The

result is shown in Figure 5 with the convergence rate of order O( 1
n4 ). The last one

is using both techniques. We rewrite equation and then rediscretize the quadrature

nodes. The result is shown in Figure 6 with the convergence rate of order O( 1
n4 ).

This shows the rediscretization quadrature node technique is better than the other

techniques used.
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Figure 43: (a) Graph of n versus error max|xn(ti) − x(ti)| for i = 0, . . . , p (in blue) and

Graph of n versus 1
n2.5 (in green) and (b)Graph of n versus error max|xn(ti) − x(ti)| for

i = 0, . . . , n (in blue) and Graph of n versus 1
n4 (in green).
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Figure 44: Graph of n versus error max|xn(ti)−x(ti)| for i = 0, . . . , n (in blue) and Graph

of n versus 1
n4 (in green).

Example 5:

λx(t) −
∫ 1

0

K(t, s)x(s)ds = 0 , t ∈ [0, 1]

where K(t, s) =

{
−
√

ts ln(s), t ≤ s

−
√

ts ln(t), s ≤ t

.

The Kernel has unbounded first derivative and has discontinuity along line s = t

and the Kernel itself is unbounded at t = 0. Without using technique, we get the

convergence rate of order O( 1
n4 ).

We tried the same method as mentioned previously by using n+1 Gaussian nodes

when s < t and n+1 Gaussian nodes when s < t for the numerical integration. Then

we reduce the effect of discontinuity on the solution x(t) by setting

x(t)

[
λ −

∫ b

a

K(t, s)ds

]
−

∫ b

a

K(t, s)[x(s) − x(t)]ds = 0

x(t)

[∫ b

a

K(t, s)ds

]
+

∫ b

a

K(t, s)[x(s) − x(t)]ds = λx(t)
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Figure 45: (a) Graph of p versus the error |λ−λn| (b) Graph of n versus error max|xn(ti)−

x(ti)| for i = 0, . . . , n (in blue) and Graph of n versus 1
n4 (in green).

x(t)[A(t) −
n∑

k=0

K(t, tk)wk] +
n∑

k=0

K(t, tk)wkx(tk) = λx(t).

A(t) =

∫ 1

0

K(t, s)ds =

∫ t

0

−
√

tsln(t)ds +

∫ 1

t

−
√

tsln(s)ds =
4

9

√
t − 4

9
t2

We seek for xn(t) =
n∑

j=0

cjLk(t) then the equation becomes

n∑
j=0

cj{Lk(ti)[A(ti)−
n∑

k=0

K(ti, tk)wk]+
n∑

k=0

K(ti, tk)wkLk−1(tk)} = λ
n∑

j=0

cjLk(ti), i = 0, ..., n

In matrix notation,

Bc = λDc

where

B = [bij](n+1)x(n+1), bij = Lj(ti)[A(ti) −
n∑

k=0

K(ti, tk)wk] +
n∑

k=0

K(ti, tk)wkLk(tk)

c = [c0, c1, c2, ..., cn]T , D = [dij] = [Lj(ti)].

We will solve for eigenvalue λ and corresponding eigenfunction. This is a general-
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ized eigenvalue problem. From our numerical solution, the convergence rate of |λn−λ|

is of order (e/n)ln(n). Figure 46 shows n versus error |λn − λ| when n = 4, ..., 19 (in

blue) and p versus (e/n)ln(n) (in green) on the same graph. In this figure we can see

that both graphs are of the same shape. This is slightly better than the rate shown in

Figure 45, using only n+1 Gaussian nodes when s < t and n+1 Gaussian nodes when

s > t for the numerical integration, and without reducing the effect of discontinuity

of the kernel on the solution.
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Figure 46: (a) Graph of n versus error |λn − λ| when n = 4, ..., 19 (b) Graph of n versus

error |λn − λ| when n = 4, ..., 19 (in blue) and Graph of n versus (e/n)ln(n) (in green).

Example 6: Love’s Equation (d = −1, λ = 1)

x(t) − 1

π

∫ 1

−1

1

1 + (t − s)2
x(s)ds = f(t)

In this case, K(t, s) =
1

π

1

1 + (t − s)2
. We apply the same technique as in Example

5 together with the collocation method. The general form of the integral equation
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can be rewritten as

x(t)

[
1 − λ

∫ b

a

K(t, s)ds

]
− λ

∫ b

a

K(t, s)[x(s) − x(t)]ds = f(t)

x(t)

[
1 − λ

n∑
k=0

K(t, tk)wk

]
− λ

n∑
k=0

K(t, tk)wk[x(tk) − x(t)] = f(t),

where t0 ≤ t1 ≤ t2 ≤, ..., tk are quadrature nodes, to reduce the effect of the singularity

of K(t, s) (along t = s) on x(t). The first sum and first term of the second sum cancel

out. The remaining integrand is still K(t, s)x(s).

However, this technique works well only in the case that

∫ b

a

K(t, s)ds can be

obtained analytically. It does not make much difference in the case that

∫ b

a

K(t, s)ds

is computed numerically because the first integration term cancel out with the second

integration term(they both use the same quadrature rule).

But if

∫ b

a

K(t, s)ds = A(t)(can be obtain analytically), then the equation becomes

x(t)[1 − λA(t) + λ

n∑
k=0

K(t, tk)wk] − λ

n∑
k=0

K(t, tk)wkx(tk) = f(t).

Apply the collocation method with the Legendre expansion and Gaussian nodes

−1 < t0 < t1 < t2 < ... < tn < 1 and xn(t) =
n∑

j=0

cjLk(t). Equation becomes

n∑
j=0

cj{Lk(ti)[1 − λA(ti) + λ

n∑
k=0

K(ti, tk)wk] − λ

n∑
k=0

K(ti, tk)wkLk(tk)} = f(ti)

In matrix notation,

Bc = F

where

B = [bij](n+1)x(n+1), bij = Lj(ti)[1−λA(ti)+λ
n∑

k=0

K(ti, tk)wk]−λ
n∑

k=0

K(ti, tk)wkLk(tk)
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c = (c0, c1, c2, ..., cn)T , F = (f(t0), f(t1), f(t2), ..., f(tn))T .

For this example, K(t, s) =
1

π

1

1 + (t − s)2
, f(t) = 1, λ = 1.

It follows that

A(t) =

∫ 1

−1

K(t, s)ds =

∫ 1

−1

1

π

1

1 + (t − s)2
ds = − 1

π

∫ t−1

t+1

1

1 + u2
du

A(t) =
1

π
[Arctan(t + 1) − Arctan(t − 1)]

F = (1, 1, ..., 1)T , K(ti, tk) =
1

π

1

1 + (ti − tk)2

The numerical result shown below is the numerical value of x(t) when t = 0 and

n = 3, 5, ..., 19(odd). The maximum pointwise error max|xn(0)−x(0)| was computed

with x(0) = 1.919031993126952 obtained from MATLAB when n = 25(i.e. x25(0)).

Figure 47 shows that the convergence rate is of order (
e

n
)0.8n or closer. Note that we

don’t have the exact solution to compare with our numerical result but what we use

is the numerical value when n is high.

2 4 6 8 10 12 14 16 18 20
10

−16

10
−14

10
−12

10
−10

10
−8

10
−6

10
−4

10
−2

p

er
ro

r(
m

ax
|x

n−
x|

)

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

p

er
ro

r

Figure 47: (a)Graph of n versus error |xn(0) − x(0)| when n = 3, ..., 19 (b) Graph of n

versus error |xn(0) − x(0)| for n = 3, . . . , 19 (in blue) and Graph of n versus (e/n)0.8n (in
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Appendices

A Basic Theorems and Analysis

A1. The Fundamental Theorem of Calculus

From the Fundamental Theorem of Calculus

∫ T

t

d

dy
(EN(y))2dy = E2

N(T ) − E2
N(t)

so 2

∫ T

0

EN · d

dt
ENdt = [EN(T )]2 − [EN(0)]2

(
d

dt
EN , EN) =

1

2
[EN(T )]2 − 1

2
[EN(0)]2

A2.Gronswall’s Inequality[36], Page 36

If ϕ, α are real-valued functions and continuous on [a,b] , t ∈ [a, b] with β(t) ≥ 0

integrable on [a,b] and

ϕ(t) ≤ α(t) +

∫ t

a

β(s)ϕ(s)ds.

Then

ϕ(t) ≤ α(t) +

∫ t

a

β(s)α(s)e
∫ t

s β(u)duds.

In particular, if r0 and k are constant and

ϕ(t) ≤ r0 +

∫ t

a

kϕ(s)ds.

Then

ϕ(t) ≤ r0e
k(t−a) , ∀t ∈ [a, b]
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A3. Upper bound for maximum norm [17], Page 301

If u : [0, T ] → X then

maxt∈[0,T ]‖u(t)‖ ≤ C‖u‖W 1,p(0,T,X),

For p = 2,u ∈ W 1,2
(0,T,X) ⇒ u ∈ H1

(0,T ),

maxt∈[0,T ]‖u(t)‖ ≤ C‖u‖W 1,2(0,T,X)

maxt∈[0,T ]‖u(t)‖ ≤ C(‖u‖2
L2(0,T ) + ‖Du‖2

L2(0,T ))
1
2

(maxt∈[0,T ]‖u(t)‖)2 ≤ C(‖u‖2
L2(0,T ) + ‖Du‖2

L2(0,T ))

maxt∈[0,T ]|u(t)|2 ≤ C(‖u‖2
L2(0,T ) + ‖du

dt
‖2

L2(0,T ))

A4.Shifted Chebyshev Polynomials on [0,T] [43, 44]

[a, b] → [−1, 1] , x =
2t − a − b

b − a

[−1, 1] → [a, b] , t =
(b − a)x + a + b

2

Chebyshev polynomials of the first kind: T̂n on [0,T] and Tn on [-1,1]

T̂n(t) = Tn(
2t − T

T
) = Tn(x) , Tn(θ) = cos(nθ), x = cos(θ).

(T̂i, T̂j)ω̂ =

∫ T

0

T̂i(t)T̂j(t)
1√

tT − t2
dt

=

∫ T

0

T̂i(t)T̂j(t)
T√

T 2 − 4t2 + 4tT − T 2

2

T
dt

=

∫ T

0

T̂i(t)T̂j(t)
1√

1 − (2t−T
T

)2

2

T
dt

=

∫ 1

−1

Ti(x)Tj(x)
1√

1 − x2
dx
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(T̂i, T̂j)ω̂ = (Ti, Tj)ω

=
{ π , n = 0

π
2

, n ≥ 1

where ω̂ = 1√
tT−t2

is the weight corresponding to T̂n on [0, T ]

(T̂ ′
i , T̂

′
j)ω̂ =

∫ T

0

T̂ ′
i (t)T̂

′
j(t)

1√
tT − t2

dt

=
4

T 2

∫ 1

−1

T ′
i (x)T ′

j(x)
1√

1 − x2
dx

=
4

T 2

∫ 0

π

−i sin(iθ)
− sin(θ)

−j sin(jθ)
− sin(θ)

sin(θ)
− sin(θ)dθ

=
4

T 2
ij

∫ π

0

sin(iθ) sin(jθ)

sin2(θ)
dθ

=
{ 4

T 2 πj3 , i = j ≥ 1

0 , i 6= j

Chebyshev polynomials of the second kind: Ûn on [0,T] and Un on [-1,1]

Ûn(t) = Un(
2t − T

T
) = Un(x) , Un(θ) =

sin((n + 1)θ)

sin(θ)
, x = cos(θ).

(Ûi, Ûj)ω̃ =

∫ T

0

Ûi(t)Ûj(t)
4

T 2

√
tT − t2dt

=

∫ T

0

Ûi(t)Ûj(t)

√
T 2 − 4t2 + 4tT − T 2

T

2

T
dt

=

∫ T

0

Ûi(t)Ûj(t)

√
1 − (

2t − T

T
)2

2

T
dt

=

∫ 1

−1

Ui(x)Uj(x)
√

1 − x2dx

where ω̃ = 4
T 2

√
tT − t2 is the weight corresponding to T̂n on [0, T ]
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A5. Projection Error [54, 55, 37, 43]

A5.1 Projection Error on [0,T]

Consider the expansion

p(t) =
∞∑

k=0

pkT̂k(t) , q(t) =
∞∑

k=0

qkT̂k(t)

We design ΠNp(t) =
∑N

k=0 pkT̂k(t) so that (p − ΠNp, T̂m) = 0 , m = 0, ..., N .

p − ΠNp =
∞∑

k=N+1

pkT̂k(t) , q − ΠNq =
∞∑

k=N+1

qkT̂k(t).

With this projection we have

(p − ΠNp, T̂m)ω̂,T = 0 for m = 0, ..., N

‖p − ΠNp‖2
ω̂,T =

∞∑
k=N+1

p2
k

π

2
, ‖q − ΠNp‖2

ω̂,T =
∞∑

k=N+1

q2
k

π

2

Consider the coefficient for k ≥ 1, [44] page 71.

pk =
2

π

∫ T

0

p(t)T̂k(t)
1√

tT − t2
dt =

2

π

∫ 1

−1

p̂(x)Tk(x)
1√

1 − x2
dx

=
2k+1k!

π(2k)!

∫ 1

−1

p̂(k)(x)(1 − x2)k− 1
2 dx

=
2k+1k!

π(2k)!

(T

2

)k

p(k)(ξk)
π(2k)!

22k(k!)2
, ξk ∈ (0, T )

pk =
1

22k−1(k!)

(T

2

)k

p(k)(ξk)

‖p − ΠNp‖2
ω̂,T =

π

2

∞∑
k=N+1

( 1

22k−1k!

(T

2

)k

p(k)(ξk)
)2

≤ π

2

∞∑
k=N+1

( 1

22k−1k!

(T

2

)k

cMk
)2

≤ 4πc2

∞∑
k=N+1

( 1

23kk!
T kMk

)2
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‖p − ΠNp‖2
ω̂,T = 4πc2

[ T 2(N+1)M2(N+1)

26(N+1)(N + 1)!2
+

T 2(N+2)M2(N+2)

26(N+2)(N + 2)!2
+ . . .

]
= 4πc2

( TN+1MN+1

23(N+1)(N + 1)!

)2[
1 +

T 2M2

24(N + 2)2
+

T 4M4

28(N + 3)2(N + 2)2
+ . . .

]
Choose N such that T 2M2

23(N+2)2
< 1. Then

‖p − ΠNp‖2
ω̂,T ≤ 4πc2

( TN+1MN+1

23(N+1)(N + 1)!

)2[
1 +

1

2
+

1

22
+ . . .

]
= 8πc2

( TN+1MN+1

23(N+1)(N + 1)!

)2

Use Stirling’s formula: n! ≈
(

n
e

)n√
2πn. In fact, 1

n!
<

(
e
n

)n
1√
2πn

‖p − ΠNp‖2
ω̂,T ≤ 8πc2

(TN+1MN+1

23(N+1)

)2( e

N + 1

)2(N+1)( 1√
2π(N + 1)

)2

=
2c2

N + 1

( TMe

8(N + 1)

)2(N+1)

‖p − ΠNp‖ ≤
√

2c√
N + 1

( eTM

8(N + 1)

)(N+1)

Similarly,

‖q − ΠNq‖ ≤
√

2c√
N + 1

( eTR

8(N + 1)

)(N+1)

A5.2 Projection Error on [0,T]

p − ΠNp =
∞∑

k=N+1

pkT̂k(t) , q − ΠNq =
∞∑

k=N+1

qkT̂k(t).

d

dt
(p − ΠNp) =

∞∑
k=N+1

pkT̂
′
k(t) ,

d

dt
(q − ΠNq) =

∞∑
k=N+1

qkT̂
′
k(t).

Then

‖ d

dt
(p − ΠNp)‖2

ω̂,T = (
∞∑

k=N+1

pkT̂
′
k,

∞∑
j=N+1

pjT̂
′
j)ω̂

=
∞∑

k=N+1

p2
k

4

T 2
πk3

=
4

T 2
π

∞∑
k=N+1

k3
( 1

22k−1k!

(T

2

)k

p(k)(ξk)
)2

, ξk ∈ (0, T )
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‖ d

dt
(p − ΠNp)‖2

ω̂,T ≤ 4πc2

T 2

∞∑
k=N+1

k3
( 1

22k−1k!

(T

2

)k

Mk
)2

=
16πc2

T 2

∞∑
k=N+1

( √
kT kMk

23k(k − 1)!

)2

By Stirling’s formula, 1
n!

<
(

e
n

)n
1√
2πn

so
√

n
(n−1)!

< n√
2π

(
e
n

)n

.

‖ d

dt
(p − ΠNp)‖2

ω̂,T ≤ 16πc2

T 2

∞∑
k=N+1

(kT kMk

√
2π23k

( e

k

)k)2

=
8c2e2

T 2

∞∑
k=N+1

(T kMk

23k

( e

k

)k−1)2

=
8c2e2

T 2

(TN+1MN+1

23(N+1)

( e

N + 1

)N)2[
1 +

T 2M2e2

24(N + 2)2

(N + 1

N + 2

)2N

+
T 4M4e4

28(N + 3)4

(N + 1

N + 3

)2N

+ . . .
]

Choose N such that T 2M2e2

23(N+2)2
< 1. Then

‖ d

dt
(p − ΠNp)‖2

ω̂,T ≤ 8c2e2

T 2

(TN+1MN+1

8(N+1)

( e

N + 1

)N)2[
1 +

1

2
+

1

22
+ . . .

]
=

16c2e2

T 2

T 2M2

42

( TMe

8(N + 1)

)2N

‖ d

dt
(p − ΠNp)‖ω̂,T ≤ ceM

( TMe

8(N + 1)

)N

Similarly,

‖ d

dt
(q − ΠNp)‖ω̂,T ≤ ceM

( TRe

8(N + 1)

)N

A5.3 Projection Error on [0,T]

Consider the expansion

p(t) =
∞∑

k=0

pkT̂k(t) ,
d

dt
p(t) =

∞∑
k=1

pkT̂
′
k(t)

By using the identity of the Jabobi polynomials [12]

dP
(α,β)
k

dx
=

1

2
(k + 1 + α + β)P

(α+1,β+1)
k−1
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The relationship for the derivative of the Chebyshev polynomials of the first kind

(α = β = −1
2
) and the Chebyshev polynomials of the second kind (α = β = 1

2
)

becomes

T ′
k+1(x) = (k + 1)Uk(x) ; T̂ ′

k+1(t) =
T

2
(k + 1)Ûk

p′(t) =
∞∑

k=1

pk
T

2
kÛk−1 =

∞∑
k=0

p̃kÛk

where p̃k = pk+1
2
T
(k + 1) , k ≥ 0.

We define

ΠNp′ =
N∑

k=0

p̃kÛk so (p′ − ΠNp′, Ûm)ω̂,T = 0 for m = 0, ..., N.

p′ − ΠNp′ =
∞∑

k=N+1

p̃kÛk , q′ − ΠNq′ =
∞∑

k=N+1

q̃kÛk.

Then

‖p′ − ΠNp′‖2
ω̂,T = (

∞∑
k=N+1

p̃kÛk,

∞∑
k=N+1

p̃kÛk)ω̂

=
∞∑

k=N+1

p̃2
k

π

2

We have from A5.1A5.1A5.1 that

pk =
1

22k−1(k!)

(T

2

)k

p(k)(ξk) so

‖p′ − ΠNp′‖2
ω̂,T =

π

2

∞∑
k=N+1

(2(k + 1)

T

1

22k+1(k + 1)!

(T

2

)k+1

p(k+1)(ξk)
)2

, ξk ∈ (0, T )

≤ πc2M

8

∞∑
k=N+1

( 1

22kk!

(T

2

)k

Mk
)2

=
πc2M

8

∞∑
k=N+1

(TM

8

)2k 1

k!2
‖p′ − ΠNp′‖2

ω̂,T

=
πc2M

8

(TM

8

)2(N+1) 1

(N + 1)!2
[1 +

( TMe

8(N + 2)

)2

+
( (TMe)4

84(N + 2)2(N + 3)2

)
+ . . .

]
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Choose N such that TMe
8(N+2)

< 1√
2
. Then

‖p′ − ΠNp′‖2
ω̂,T ≤ πc2M

8

(TM

8

)2(N+1) 1

(N + 1)!2

[
1 +

1

2
+

1

22
+ . . .

]
=

πc2M

4

(TM

8

)2(N+1) 1

(N + 1)!2

By Stirling’s formula, 1
n!

<
(

e
n

)n
1√
2πn

‖p′ − ΠNp′‖2
ω̂,T ≤ πc2M

4

(TM

8

)2(N+1) 1

(N + 1)!2

[
1 +

1

2
+

1

22
+ . . .

]
=

πc2M

4

( TMe

8(N + 1)

)2(N+1) 1

(
√

2π(N + 1))2

‖p′ − ΠNp′‖ω̂,T ≤ cM

2
√

2

1√
N + 1

( TMe

8(N + 1)

)(N+1)

Similarly,

‖q′ − ΠNq′‖ω̂,T ≤ cR

2
√

2

1√
N + 1

( TRe

8(N + 1)

)(N+1)

A6. Interpolation Error on [0,T]

Newton Divided Difference [15]: an interpolation at points x0, x1, .., xn,i.e.

pn(x0) = f(x0), ..., pn(xn) = f(xn),

pn(x) = f(x0) + ψ0(x)f [x0, x1] + ... + ψn−1(x)f [x0, x1, ..., xn]

where ψn(x) = (x − x0)...(x − xn) (degree n+1) and

f [x0, x1, ..., xn] = an =
f(xn) − pn−1(xn)

(x − x0)...(x − xn−1)
.

For any interpolation at x0, x1, .., xn, t,i.e. pn+1(x0) = f(x0), ..., pn+1(xn) = f(xn), pn+1(t) =

f(t),

pn+1(t) − pn(t) = f(t) − pn(t) = (t − x0)...(t − xn)f [x0, x1, ..., xn, t]
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and we have

f [x0, x1, ..., xn, t] =
f (n+1)(ξ)

(n + 1)!
, ξ ∈ H{x0, x1, ..., xn, t}

(smallest interval containing x0, x1, ..., xn, t).

On any interval [a, b], the linear mapping from [−1, 1] → [a, b] resulting C(
h

2
)n+1

as an extra term for the transformation involving ψn.

A6.1 Interpolation Error of Legendre-Gauss-Lobatto points on [-1,1]

These are the points −1 = ξ0 < ξ1 < ... < ξn = 1 where ξi’s , i=1,...,n-1 are zeros

of Legendre polynomial L′
n(x).

It follows that (x − ξ1)...(x − ξn−1) are factors of L′
n(x) and it is a polynomial of

degree n − 1 so

L′
n(x) = a(x − ξ1)...(x − ξn−1).

Note that the expanded form for Legendre polynomial is given by

Ln(x) =
1

2n

[n/2]∑
l=0

(−1)l

(
n

l

)(
2n − 2l

n

)
xn−2l

L′
n(x) =

1

2n

[n/2]∑
l=0

(−1)l

(
n

l

)(
2n − 2l

n

)
(n − 2l)xn−2l−1

Therefore we can fine the leading coefficient a (when the degree of x is n−1) which

is when l = 0

a =
n

2n

(
2n

n

)
.

Then

(x − ξ1)...(x − ξn−1) =
L′

n(x)

a
=

2n

n
(
2n
n

)L′
n(x)
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Thus the interpolation error

f(x) − pn(x) = (x − ξ0)(x − ξ1)...(x − ξn−1)(x − ξn)f [ξ0, ξ1, ..., ξn, x]

= (x2 − 1)
2n

n
(
2n
n

)L′
n(x)f [ξ0, ξ1, ..., ξn, x]

=
2n

n
(
2n
n

) n(n + 1)

2n + 1
(Ln+1(x) − Ln−1(x))f [ξ0, ξ1, ..., ξn, x]

f(x) − pn(x) = c1(n)(Ln+1(x) − Ln−1(x))
f (n+1)(ξ)

(n + 1)!

where c1(n) =
2n(

2n+1
n

) =
2n+1(
2n+2
n+1

) . By Stirling’s formula, we obtain the upper bound for

the interpolation error

f(x) − pn(x) ≤
√

π

√
n + 1

2n

‖f (n+1)(ξ)‖∞
(n + 1)!

≤ C(
eM

2(n + 1)
)n+1

Note that on any interval [0, T ],

f(x) − pn(x) ≤ C(
eM

2(n + 1)
)n+1(

T

2
)n+1

f(x) − pn(x) ≤ C(
eMT

4(n + 1)
)n+1

Next, consider the remainder of the derivative [54]

f ′(x) − p′n(x) = c1(n)(L′
n+1(x) − L′

n−1(x))f [ξ0, ξ1, ..., ξn, x] + c1(n)(Ln+1(x) − Ln−1(x))f ′[ξ0, ξ1, ..., ξn, x]

= c1(n)(2n + 1)Ln(x)f [ξ0, ξ1, ..., ξn, x] + c1(n)(Ln+1(x) − Ln−1(x))f [ξ0, ξ1, ..., ξn, x, x]

≤ c1(n)
2cMn+2

(n + 2)!
+ c1(n)(2n + 1)

cMn+1

(n + 1)!

≤ C(
eM

2(n + 1)
)n

On an interval [0, T ],

f ′(x) − p′n(x) ≤ C(
eM

2(n + 1)
)n(

T

2
)n ≤ C(

eMT

4(n + 1)
)n
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A6.2 Interpolation Error of Legendre-Gaussian points

These are the points −1 < z0 < z1 < ... < zn < 1 where zi’s are zeros of Legendre

polynomial Ln+1(x).

It follows that (x − z0)...(x − zn) are factors of Ln+1(x) so

Ln+1(x) = a(x − z0)...(x − zn).

Note that the expanded form for Legendre polynomial is given by

Ln+1(x) =
1

2n+1

[(n+1)/2]∑
l=0

(−1)l

(
n + 1

l

)(
2(n + 1) − 2l

n + 1

)
xn+1−2l

Therefore the leading coefficient a is

a =
1

2n+1

(
2n + 2

n + 1

)
.

Then

(x − z0)...(x − zn) =
Ln+1(x)

a
=

2n+1(
2n+2
n+1

)Ln+1(x)

Thus the interpolation error

f(x) − pn(x) = (x − z0)...(x − zn)f [z0, z1, ..., zn, x]

=
2n+1(
2n+2
n+1

)Ln+1(x)f [z0, z1, ..., zn, x]

=
2n+1(n + 1)!2

(2n + 2)!
Ln+1(x)

‖f (n+1)(ξ)‖∞
(n + 1)!

By Stirling’s formula and the smoothness of the function, we obtain the upper
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bound for the interpolation error

f(x) − pn(x) ≤ cMn+1 2n+1
√

2π(n + 1)n+3/2

en+1
(1 +

1

4(n + 1)
)

e2(n+1)

√
2π(2n + 2)2n+5/2

= C
1√
2
(

eM

2(n + 1)
)n+1(1 +

1

4(n + 1)
)

≤
√

2c(
eM

2(n + 1)
)n+1 , (1 +

1

4(n + 1)
) < 2

Note that on any interval [0, T ],

f(x) − pn(x) ≤
√

2C(
eM

2(n + 1)
)n+1(

T

2
)n+1

f(x) − pn(x) ≤
√

2C(
eMT

4(n + 1)
)n+1

A7.Difference of Projection and Interpolation Errors on [0,T]

‖ΠNp′ − (INp)′‖ ≤ ‖ΠNp′ − p′‖ + ‖p′ − (INp)′‖

From A5.3 and A6.1

‖ΠNp′ − (INp)′‖ ≤ cM

2
√

2

1√
N + 1

( TMe

8(N + 1)

)(N+1)

+ C(
TMe

8(N + 1)
)N

≤ C(
TMe

8(N + 1)
)N

and

‖ΠNq′ − (INq)′‖ ≤ cR

2
√

2

1√
N + 1

( TRe

8(N + 1)

)(N+1)

+ C(
TRe

8(N + 1)
)N

≤ C(
TRe

8(N + 1)
)N
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B Symplectic Algorithms

Scheme 1: Second order midpoint Euler Scheme [19].

This is an implicit method. Let z = (p1, p2, ..., pn, q1, ..., qn),

J =

 0 In

−In 0

 so J−1 =

 0 −In

In 0

 = −J , Hz = [Hp1 , ..., Hpn , Hq1 , ..., Hqn ]T

1

h
(zk+1 − zk) = J−1Hz(

1

2
zk+1 +

1

2
zk).

Simply written as

pk+1
i = pk

i − hHqi
(
1

2
(pk+1 + pk),

1

2
(qk+1 + qk))

qk+1
i = qk

i + hHpi
(
1

2
(pk+1 + pk),

1

2
(qk+1 + qk)), i = 1, ..., n.

For a linear system, we can replace the right hand side as

1

h
(zk+1 − zk) = J−1[

1

2
Hz(z

k+1) +
1

2
Hz(z

k)]

or pk+1
i = pk

i − h
1

2
[Hqi

(pk+1, qk+1) + Hqi
(pk, qk)]

qk+1
i = qk

i + h
1

2
[Hpi

(pk+1, qk+1) + Hpi
(pk, qk)].

The equivalent scheme is symplectic for the linear system only. It is not symplectic

for nonlinear system.

Scheme 2: Second order scheme [26].

pk+1
i = pk

i − hHqi
(pk+1, qk) − h2

2

n∑
j=1

(Hqj
Hpj

)qi
(pk+1, qk)

qk+1
i = qk

i + hHpi
(pk+1, qk) +

h2

2

n∑
j=1

(Hqj
Hpj

)pi
(pk+1, qk) , i = 1, ..., n.
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Note:
∑n

j=1(Hqj
Hpj

)qi
(pk+1, qk) =

∑n
j=1(Hqj

Hpj
)qi

(pk+1
1 , ..., pk+1

n , qk
1 , ..., q

k
n)T .

For n=1,

pk+1 = pk − hHq(p
k+1, qk) − h2

2
(HqqHp + HpqHq)(p

k+1, qk)

qk+1 = qk + hHp(p
k+1, qk) +

h2

2
(HqpHp + HppHq)(p

k+1, qk).

Scheme 3: Second order scheme for the three axis-symmetric Hamiltonian system

[25].

P1 = p +

√
3

4
h sin(

1

2
p +

√
3

2
q)

Q1 = q − 1

4
h sin(

1

2
p +

√
3

2
q)

P2 = P1 −
√

3

4
h sin(

1

2
P1 −

√
3

2
Q1)

Q2 = Q1 −
1

4
h sin(

1

2
P1 −

√
3

2
Q1)

P3 = P2 −
√

3

4
h sin(

1

2
P2 −

√
3

2
Q2)

Q3 = Q2 − h sin(P2)

Q4 = Q3 −
1

4
h sin(

1

2
P3 −

√
3

2
Q3)

p̂ = P3 +

√
3

4
h sin(

1

2
P3 +

√
3

2
Q4)

q̂ = Q4 −
1

4
h sin(

1

2
P3 +

√
3

2
Q4)

Scheme 4: Second order scheme for the Henon-Heiles(HH) system [24].

pk+1
1 = pk

1 − h(qk
1 + 2qk

1q
k
2)

pk+1
2 = pk

2 − h(qk
2 + (q2

1)
k − (q2

2)
k)

qk+1
1 = qk

1 + hpk+1
1

qk+1
2 = qk

2 + hpk+1
2
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We conduct a systematic comparison of spectral methods with some symplectic

methods in solving Hamiltonian dynamical systems. Our main emphasis is on the

nonlinear problems. Numerical evidences have demonstrated that the proposed spec-

tral methods preserve both energy and symplectic structure up to the machine error

in each time (large) step, and therefore have a better long time behavior.
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